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Abstract

Random Phase Approximation (RPA) provides a very convenient tool to study the ensembles of weakly interacting waves,
commonly called wave turbulence. In its traditional formulation, RPA assumes that phases of interacting waves are random
quantities but it usually ignores randomness of their amplitudes. Recently, RPA was generalised in a way that takes into account
the amplitude randomness and it was applied to study of the higher momenta and probability densities of wave amplitudes.
However, to have a meaningful description of wave turbulence, the RPA properties assumed for the initial fields must be proven
to survive over the nonlinear evolution time, and such a proofis the main goal of the present paper. We derive an evolution equation
for the full probability density function which contains the complete information about the joint statistics of all wave amplitudes
and phases. We show that, for any initial statistics of the amplitudes, the phase factors remain statistically independent uniformly
distributed variables. If in addition the initial amplitudes are also independent variables (but with arbitrary distributions) they
will remain independent when considered in small sets which are much less than the total number of modes. However, if the size
of a set is of order of the total number of modes then the joint probability density for this set is not factorisable into the product
of one-mode probabilities. In the other words, the modes in such a set are involved in a “collective” (correlated) motion. We also
study new type of correlators describing the phase statistics.
© 2004 Elsevier B.V. All rights reserved.

1. Introduction

Wave turbulence (WT)is acommon name for the fields of dispersive waves which are engaged in stochastic weakly
nonlinear interactions over a wide range of scales. Plentiful examples of WT are found in oceans, atmospheres,
plasmas and Bose-Einstein condensHteg]. Roughly, there have been three major approaches to derive the WT
theory, one based on a diagrammatic apprd8c¢tD,9] the second based on cumulant expansja11,7]and
the third one, the Random Phase Approximation (RRA3,5].
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The diagrammatic approach was developed in a field theoretical spirit based on the Wyld's te@ighes
method introduces an artificial Gaussian forcing for which a zero limit is taken at the end of the derivation. It is
usually said that the statistical properties of this force (Gaussianity) do not affect the statistical properties of the
resulting WT state which will be determined by the nonlinear properties only. However, such independence of the
WT state on the statistics of the “seed” forcing is not obvious because the limit of small nonlinearity is taken before
the limit of small force, i.e., the force remains much greater than the nonlinearity. In particular, when the nonlinearity
parameter is strictly zero, the Wyld technique gives a Gaussian steady state which is clearly an artefact of this methoc
because for linear systems statistics of the wave amplitudes remain the same as in the initial condition and, therefore
can be arbitrary. The question if any nonlinearity, no matter how small, can break this dependence of the steady stat
on the initial conditions still has not been answered in the literature. Thus, the diagrammatic approach, although a
very efficient way to build the perturbation expansion, needs to be expanded to include non-Gaussian “seed” force
in order to see to what extent the results are not sensitive to the force statistics. However, some elements of the Wylc
technigue will be used in the present paper, not as a complete description but rather as an auxiliary aid in writing
out complicated terms.

The cumulant expansion approach differs from the other methods by working directly with the continuous Fourier
transforms corresponding to the infinite coordinate space without introducing afinite box as an intermediate step. The
main idea here is that, although the Fourier transform is ill-defined for the wave fields corresponding to homogeneous
turbulence, it is well defined for the cumulants provided that the correlations decay rapidly enough in the coordinate
space. The cumulant method is very elegant for describing the spectra and the multiple-point moments the points
in which are not “fused” (i.e., all different). However, some important statistical quantities involve fused moments
and they are hard (if at all possible) to define without introducing a finite box as an intermediate step. For example,
one of such objectg|a|*), is important because it describes intensity of fluctuations okibgace distribution of
energyla|?, namelySE = /(|a|%) — (|a|?)2 (se€[19]). Furthermore, non-decaying in thespace correlations tend
to naturally develop over the nonlinear tirf#9] and it is not clear what wave fields these correlations correspond
to within the cumulant approach.

RPA approach has been by far most popular technique due to its clear intuitive content. However, this approach
has occasionally been downgraded to just a convenient way of interpreting the results of a more rigorous technique
based on the cumulant expansions. It happened because RPA, being widely used by physicists, had not bee
formulated rigorously. In particular, it is typically assumed that the phases evolve much faster than amplitudes in the
system of nonlinear dispersive waves and, therefore, the averaging may be made over the phases only “forgetting
that the amplitudes are statistical quantities too (see, [&])-,This statement become less obvious if one takes
into account that we are talking not about the linear phagdsut about the phases of the Fourier modes in the
interaction representation. Thus, it has to be the nonlinear frequency correction that helps randomising the phase
[17]. On the other hand, for three-wave systems (considered in this paper) the period associated with the nonlinea
frequency correction is of the saregorder in small nonlinearity as the nonlinear evolution time and, therefore,
phase randomisation cannot occur faster that the nonlinear evolution of the amplitudes. One could hope that the
situation is better for four-wave systems (not considered here) because the nonlinear frequency correction is still
~ €2 but the nonlinear evolution appears only in #ieorder. However, in order to make the asymptotic analysis
consistent, suck? correction has to be removed from the interaction-representation amplitudes and the remaining
phase and amplitude evolutions are, again, at the same time scale (efywThis picture is confirmed by the
numerical simulations of the four-wave systeffi®,20]which indicate that the nonlinear phase evolves at the same
time scale as the amplitude. Thus, to proceed theoretically one has to start with phases which are already randor
(or almost random) and hope that this randomness is preserved over the nonlinear evolution time. In most of the
previous literature such preservation was assumed but not proven. The goal of this paper will be to study the extent
to which such an assumption is valid.

Another goal of this paper is to make RPA formulation more consistent by taking into account that both phases
and the amplitudes are random variables. Indeed, even if one starts with a wavefield which has random phases bt
deterministic amplitudes, as itis typically done in numerical simulations, the amplitudes will get randomised because
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the nonlinear term producing their evolution contains (random) phase factors. Preliminary steps were recently done
in [19,20]where we assumed that all the phases and the amplitudesiinittabwavefield are random variables
independent of each other and that the phase factors are uniformly distributed on the unit circle on the complex
plane. We kept the same acronym RPA but re-interpreted it as “Random Phases and Amplitudes”, reflecting the
fact that, first, the amplitudes are also random and, second, that it is not an “approximation” but rather an assumed
property of thanitial field. Such a generalised RPA was usefili®] to study the evolution of the higher moments

of the Fourier amplitudes and j&0] to study their “one-mode” PDF. In fact, this form of RPA is more general than

the cumulant approach because it can handle fields with long correlation lengths which appear to be important for
intermittency[20].

Of course, for such an analysis to be trustworthy one should prove that the RPA properties hold over the nonlinear
time and not just for the initial fields. Such mathematical validation of the RPA method will be in the focus of the
present paper. To do this we will have to study the full joint PDF which involves the complete statistical information
about the system, including the multi-mode correlations of both the amplitudes and the phase factors. We will derive
an evolution equation for such PDF and we will show that it is identical to the equation obtained for the excitations
in anharmonic crystals originally obtained by PeigilS] and later reproduced by Brout and Prigogj@é] and
Zaslavskii and Sagdedit7]. All these works were restricted to considering a quite narrow class of interaction
Hamiltonians arising from a potential energy, i.e., depending on the coordinates but not momenta. These class does
not include a large number of interesting WT systems, e.g., the capillary, internal, Rossby and Alfven waves. It is
remarkable, therefore, that the Peierls equation turns out to be universal for the general class of three-wave systems
as it is shown in the present paper. Further, we use this equation to validate an “essential” RPA formulation, i.e.,
approximate RPA which holds only up to a certain order in nonlinearity and discreteness, but which is sufficient for
the WT closure. This validation gives RPA technique a status of a rigorous approach which, due to the simplicity
of its premises, is a winning tool for the future theory of non-Gaussianity of WT, its intermittency and interactions
with coherent structures.

In addition to the mathematical validation of RPA, we will also develop WT further by considering new statistically
important quantities. For a long time, describing and predicting the energy spectra were the only concern in WT
theory. Recently, we presented a description of the higher order statistics of the one-point Fourier correlators in terms
of their moments and PDFs. They describe kkspace “noise”, i.e., the fluctuations of the mode energy about its
mean value given by the energy spectrum. We also showed PDFs have a long algebraic tail which indicates presence
of intermittency in WT fields. The present paper deals with phases, and we will therefore introduce and study some
new correlators which will allow to describe the phase statistics directly. Such a description will compliment the
mathematical validation of the RPA because it yields to a physical answer on how initially correlated phases can
get de-correlated in the first place.

2. Fields with Random Phases and Amplitudes

Let us consider a wavefield(x, r) in a periodic cube of with side and let the Fourier transform of this field
bea(t), where indexe 2 marks the mode with wavenumbigr= 2x1/L on the grid in thed-dimensional Fourier
space. For simplicity let us assume that there is a maximum wavenumbefixed, e.g., by dissipation) so that no
modes with wavenumbers greater than this maximum value can be excited. In this case, the total number of modes
is N = (kmax/7L)?. Correspondingly, indekwill only take values in a finite box, € By c Z¢ which is centred
at 0 and all sides of which are equalkigax/7L = N/3. To consider homogeneous turbulence, the large box limit
N — oo will have to be taken.

1 Itis easy to extend the analysis to the infinite Fourier spagg, = co. In this case, the full joint PDF would still have to be defined as a
N — oo limit of an N-mode PDF, but this limit would have to be taken in such a way that hgthand the density of the Fourier modes tend
to infinity simultaneously.
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Let us write the complex; asa; = A;y;, whereA; is a real positive amplitude ang is a phase factor which
takes values o8%, a unit circle centred at zero in the complex plane. Let us defindlmede joint PDFPY) as
the probability for the wave intensitieﬁ2 to be in the ranges(, s; + ds;) and for the phase factotg to be on the
unit-circle segment betweesn and&; + dg; for all [ € By. In terms of this PDF, taking the averages will involve
integration over all the real positivgs and along all the complex unit circles of glls,

[1 f ds y§ Id&l) PNs. &) f1s. &), (1)

leBy

(flA% y)) = (

where notationf{A2, v/} means that depends on aIAlZ’s and ally;’s in the set{A,z, Y, 1 € By} (similarly, {s, &}
means{s;, ¥y; 1 € By}, etc). The full PDF that contains the complete statistical information about the wavefield
a(x, 1) in the infinitex-space can be understood as a large-box limit

Plse. & = lim PN (s, ).

i.e., itis a functional acting on the continuous functions of the wavenumpandé;. In the large box limit there
is a path-integral version @1.),

(FLAZ, ) = / Ds f IDE| Pls, &) f1s. £). 2

The full PDF defined above involves &l modes (for either finitd or in the N — oo limit). By integrating out
all the arguments except for chosen few, one can have reduced statistical distributions. For example, by integrating
over all the angles and over all bMtamplitudes, we have atM-mode” amplitude PDF,

Pitsjzsesiu = ( l—[ /R+ ds; 1_[ fgi |d$m') P(N){S’ &} 3
mBy

[#J1:J2, M

which depends only on thd amplitudes marked by labejs, jo, ..., ju € By.
2.1. Definition of an ideal RPA field

Following the approach diL.9,20], we now define a “Random Phase and Amplitude” field. We say that the field
ais of RPA type if it possesses the following statistical properties:

1. All amplitudesA; and their phase factorg are independent random variables, i.e., their joint PDF is equal to
the product of the one-mode PDFs corresponding to each individual amplitude and phase,

PN, ) = [T PP (&),

IGBN

2. The phase factong; are uniformly distributed on the unit circle in the complex plane, i.e., for any rhode
PE) = §x.
Note that RPA does not fix any shape of the amplitude PDFs and, therefore, can deal with strongly non-Gaussian

wavefields. Such study of non-Gaussianity and intermittency of WT was presefit&¢iiland will not be repeated
here. However, we will study some new objects describing statistics of the phase.
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In [19,20]RPA wasassumedo hold over the nonlinear time. The main goal of this paper is to find out whether it
is true that the RPA property survives over the nonlinear time and to what extent. We will see that RPA fails to hold
in its pure form as formulated above but it survives in the leading order so that the WT closure built using the RPA
is valid. We will also see that independence of the phase factors is quite straightforward, whereas the amplitude
independence is subtle. Namely, amplitudes are independent only up to ap{V) correction. Based on this
knowledge, and leaving justification for later on in this paper, we thus reformulate RPA in a weaker form which
holds over the nonlinear time and which involdsmode PDFs with « N rather than the fulN-mode PDF.

2.2. Definition of an essentially RPA field
We will say that the field is of an “essentially RPA" type if:

1. The phase factors are statistically independent and uniformly distributed variables up)toddections, i.e.,

PV, 6) = G PN 1L+ O @
where
PG = ( [T §, iderl | P01 ©)
leBy

is theN-modeamplitudePDF.
2. The amplitude variables are almost independent in a sense that favleactv modes, thél-mode amplitude
PDF is equal to the product of the one-mode PDFs up t/Q() and O¢?) corrections,

Pircipin = POPY PO 14 OM/N) + O()]. (6)

3. Weak nonlinearity and separation of time scales

Consider weakly nonlinear dispersive waves in a periodic box. Here we consider quadratic nonlinearity and
the linear dispersion relations, which allow three-wave interactions. Example of such systems include surface
capillary waveg5,12], Rossby wave$l3] and internal waves in the ocefid]. In Fourier space, we have the
following Hamiltonian equations,

o0
.- 1 iwl t ol — . — it
i =e Y (Vhanan€@m' 8, + 2V a,ae b o), (7)

m,n=1

wherea; = a(k;) is the complex wave amplitude in the interaction representatjon,2sl/L is the wavevectoll.
is the box side lengthw!,,, = oy, — wx,, — wx,,, @1 = wy, is the wave frequency/! , is an interaction coefficient
ande is a formal small nonlinearity parameter.

In order to filter out fast oscillations at the wave period, let us seek for the solution aft timeh that 2/w <«
T « 1/we?. The second condition ensures tfas a lot less than the nonlinear evolution time. Now let us use a
perturbation expansion in small

2 (2)'

a(T) = a(o) + ea(l) +€ 8)

Substituting this expansion ifY), we get in the zeroth ordeifo)(T) = q/(0), i.e., the zeroth order term is time
independent. This corresponds to the fact that the interaction representation wave amplitudes are constant in the
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linear approximation. For simplicity, we will Writel(o)(O) = gy, understanding that a quantity is takem at O if its
time argument is not mentioned explicitly. The first order is given by

o
1 . cm —
a(T) = i Y (Vhman A8ty + 2V aan ALY, 9)
m,n=1
1 T ol 14, _ (a0l T N i e _ (1) _
wherea;, = fo g@mldt = (&“m’ — 1)/iw,,,. Here we have taken into accountthfeﬂJ (T) = ayanda;’(0) =
Iterating one more time we get

o
) _
al( )(T) = Z [ZV,ZM(—V;Z'UanaﬂaVE[wnW, ]8M+v 2VE anaya, E[a)lm, mn]5m+v)8m+n

m,n, i, v
+2V,) (- VlTUa,,aHaUE[wW, a)ln](SM_H, 2vh a_,,a,LEVE[—a)ZUI, —wln]8m+v)8l+n
+ ZVZ;’( vamaydy 5M+VE[—a)7")H, —wp] + 2V, amaﬂa‘,E[a}vm, —wln]Sierv)(Sl_i_n] (10)

where we used,({z)(O) = 0 and introduced&(x, y) = fOT A(x — y)e¥dr.

4. Evolution of the multi-mode PDF

In this section we will apply the approach[dP,20]to derive the evolution equation for the multi-mode PDF via
introducing a generating functional, performing a weak-nonlinearity expansion and statistical averaging aided by a
new graphical technique. We are going to demonstrate the phase independence property. This will also prepare us't
answer the question of the next section: to what extent the amplitudes are going to remain statistically independent?

4.1. Generating functional

Introduction of generating functionals often simplifies statistical derivations but it can be defined differently to
suit a particular technique. For our problem, the most useful form of the generating functional is

Z(N){)L, u} = (;)N < 1_[ eAIA,ZwlM1>, (11)

leByn

where{i, u} = {A;, u;; 1 € By} is a set of parameters; € R andu; € Z. Then:

PM(s, £) = PEL Z< [] 86— Apy s ’“>, (12)
{u} \leBy

where{u} = {i; € Z;1 € By}. This expression can be verified by considering mean of a fungti@, v} using
the averaging rulél) and expandingin the angular harmonicg;"; m € Z (basis functions on the unit circle),

A% )= gfm, A} [ v (13)
{m} leBy

where{m} = {m; € Z;1 € By} are indices enumerating the angular harmonics. Substituting thi€linagth PDF
given by (12) and taking into account that any non-zero poweg;ofvill give zero after the integration over the
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unit circle, one can see that LHS =RHS, i.e., tfi&) is correct. Now we can easily represéb®) in terms of the
generating functional,

PN gy =25 [ 2™ [T 6™ | (14)

{u} leBy

WhereE;1 stands for inverse the Laplace transform with respect to;adarameters anfl} = {u; € Z;1 € By}
are the angular harmonics indices.

By definition, in RPA fields all variables; andy; are statistically independent afids are uniformly distributed
on the unit circle. Such fields imply the following form of the generating functional

ZMp, ) = zZW0) T 8w, (15)
leBy
where
ZWNa Gy = < I1 eNA;2> = ZM{A, im0 (16)
IEBN

is anN-mode generating function for the amplitude statistics. Here, the Kronecker sy(phpensures indepen-
dence of the PDF from the phase factgysAs a first step in validating the RPA property we will have to prove that
the generating functional remains of fo(tb) up to 1/ N and O¢?) corrections over the nonlinear time provided
it has this form at = 0.

4.2. Asymptotic expansion of the generating functional

Let us first obtain an asymptotic weak-nonlinearity expansion for the generating funcfipnat} exploiting
the separation of the linear and nonlinear time scalEs do this, we have to calculaiat the intermediate time
t = T via substituting into itz ;(7T) from (8) and retaining the terms up to &} only. This calculation is given in
Appendix and the result of it is:

Z, w, Ty = X{h, w, T} + X{A, =1, T} (17)
with
X{, 1, T) = X(0) + (271)2N< [T & less + €22+ Ja+ Ja+ 15)]> + O, (18)
<N 4
where
_ ) ) D=0
J1_<le WZ(AJ+ (0)2) ja; > , (19)
} I 2l
v
0 0 2 1
<H D0+ aF1a P » (0) 27207 dP? > : (20)
J ¥

2 Hereafter we omit superscrip/j in the N-mode objects if it does not lead to a confusion.



128 Y. Choi et al. / Physica D 201 (2005) 121-149

= (T 5 ) @
! ; 2la;”| ’
)\2. , , Aill:
_ () ~j M Ky JHj (1)~0)y2
J4_<m ;[2 +4la§-°)|4(2 1)+2|a§°)|2}(a’ K )> ’ 22
’ 14

0 1)—H0; 1) (0)y (1)=AO
<H‘ﬂ( 93 5 @D 4 @)D
j#k

. M Mk (1)—(0) —(1) (0) (1)—(0)
+ (A]—i- 2a (0)|2> " (0)|2 a; )a > , (23)
¥

where(-) 4 and(-)y denote the averaging over the initial amplitudes and initial phases (which can be done indepen-
dently). Our next step will be to calculate the above terms by substituting into them the valif8saafia® from
(9) and (10) respectively.

4.3. Statistical averaging and graphs

Let us consider the initial fieldg,(0) = a,E ) are essentially RPA as defined above. We will perform averaging
over the statistics of the initial fields in order to obtain an evolution equations, fifAted then for the multi-mode
PDF. The ultimate goal of this exercise is to prove that the wavefield remains of the essentially RPA type over the
nonlinear time.

Let us introduce a graphical classification of the above terms which will allow us to simplify the statistical
averaging and to understand which terms are dominant. We will only consider here contributions oo,
which will allow us to understand the basic method. Calculation of the rest of the tésn&,and Js, follows the
same principles and can be foundAppendix B First, The linear irc terms are represented by which, upon
using(9), becomes

<]‘[w Z( 2A2)(anamanAmnS,Jn+n+2\7jmnamanAjn8]+n)aj> . (24)
v

Jj.m,n

Hereafter we omit, for brevity of notation, the superscript (0) because no other superscripts will appear from now
on.

Let us introduce some graphical notations for a simple classification of different contributions to this and to
other (more lengthy) formulae that will follow. Combmatlc)/f;{m m+n Will be marked by a vertex joining three
lines with in-coming and out-comingn andn directions. Complex conjugalei,n m+n Will be drawn by the same
vertex but with the opposite in-coming and out-coming directions. Preseagenftla ; will be indicated by dashed
lines pointing away and toward the vertex respectivelfus, the two terms in formul@4) can be schematically

3 This technique provides a useful classification method but not a complete mathematical description of the terms involved.
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represented as follows,

\\ \\
C, = />———<————j and Cy = ,‘,___4____]'

Ve Ve

4 4
m m

Let us average over all the independent phase factors in thig/$eSuch averaging takes into account the
statistical independence and uniform distribution of variailele particular,(y) = O, (Y;v,,) = 0 and{y;y,,) =
8/". Further, the products that involve odd number/<s are always zero, and among the even products only those
can survive that have equal numbers/cs andy’s. Thesey's andy’s must cancel each other which is possible if
their indices are matched in a pairwise way similarly to the Wick's theorem. The difference with the standard Wick,
however, is that there exists possibility of not only internal (with respect to the sum) matchings but also external
ones withy’s in the pre-factorl‘hpl“’ .

Obviously, non-zero contributions can only arise for terms in whiclgglicancel out either via internal mutual
couplings within the sum or via their external couplings to tHg in the |-product. The internal couplings will
indicate by joining the dashed lines into loops whereas the external matching will be shown as a dashed line pinned
by a blob at the end. The number of blobs in a particular graph will be callegalraceof this graph.

Note that there will be no contribution from the internal couplings between the incoming and the out-coming
lines of the same vertex because, due tostsgmbol, one of the wavenumbers is 0 in this case, which mehas
V = 0. ForJ1 we have

J1=(C1)y +(C2)y,

with
n
(]
AN
\\ . /’4\\
(Cr)y = - ---ej + Mme_ _>--—=---e2m
\‘/
//
o
m
and
n
e
N
\ ,”'\
<02>¢: ,\/———4———-.j + 77,(\ :———>-—.2n
\’,/
v
(]
m

4 In the present paper we consider only spatially homogeneous wave turbulence fields. In spatially homogeneous fields, due to momentum
conservation, there is no coupling to the zero mbde 0 because such coupling would violate momentum conservation. Therefore, if one of
the arguments of the interaction matrix elem¥rs equal to zero, the matrix element is identically zero. That is to say that for any spatially

homogeneous wave turbulence systfff? = V{ _o, = Vi 1,0 = 0.
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which correspond to the following expressions,

<Cl>¢ = Z <)L + 2A ) Vr{mA AnAj Amn(szﬁ-na(ﬂm + 1)8(Mn + l)a(ﬂj - 1) l_[ S(MI)
J

J#m#n I jm.n
2m
+ (xzm + 2’;2 ) Var A2 Ao AZ8(im + 2)8(uam — 1) [ 8w) (25)
m 2m I#m,2m
and
(Cay=2 ) ( )va AnA AT 87 8(tm + 1)(n = 1)3(u; — 1) [T 8(ur)
JFm#n J I#j,m,n
"
2% (b + gty ) V20 A2, A 28002, + D600, =) TT 300 (26)
n n I#n,2n

Because of thé-symbols involvingu'’s, it takes very special combinations of the argumenits Z{ ..} for the terms
in the above expressions to be non-zero. For example, a particular term in the first @5po&y be non-zero if
two u’s in the set{u} are equal to 1 whereas the rest of them are 0. But in this case there is only one other term in
this sum (corresponding to the exchange of valuas afidj) that may be non-zero too. In fact, only utmost two
terms in the both{25) and (26)an be non-zero simultaneously. In the other words, each external pinning of the
dashed line removes summation in one index and, since all the indices are pinned in the above diagrams, we ar
left with no summation at all ify, i.e., the number of terms iy is O(1) with respect to largd. We will see later
that the dominant contributions haveXt¥) terms. Although these terms come in #feorder, they will be much
greater that the! terms because the limN — oo must always be taken befoge— 0.

Let us consider the first of the terms,J». Substituting(9) into (20), we have

2

0 Hj
<1_[ w( )M[ Z ()‘]' + )‘iAi 24 — ) ( aman mn m+n + 2V amanA]n(s;n«Fn)
J

Jom,n, kv
x (VdyaeayALs! ., + 2V]’fchKavA’jv8’;+v)> = (B1+ B2+ By + B3)y, (27)
¥

where

m , K m ,
B1 = \) i . / BQ = \) <j . \/ G/I’Ld B3 = \\ \/

) % VA / .
n 14 n

(28)

Here the graphical notation for the interaction coefficidhésd the amplituda is the same as introduced in the
previous section and the dotted line with ingéndicates that there is a summation opbut there is no amplitude
a; in the corresponding expression.
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Let us now perform the phase averaging which corresponds to the internal and external couplings of the dashed
lines. For(By)y we have

® v Q m
\ / \ 2v /A N \ 4 A\
(Bi)y = + - b v e e
SN Ty TN
14 d m
n 1%
m
- >‘ ~
7 i \\
+2 (- - - " ,
\ d
N '
~ '
n (29)
where
m K
o\ » ,
j 1 I
>.<J. . / =3 > <x +224% - ﬂ) Vi VLA ALS 8L AnAnAA,
/ \ JEMENFKFD J
o » % 8(ttm + 1)8(un + D8 — Dy — 1) [ 8w,
n v I#m,n,k,v
m
° v
< 1 /1,
LS N (T yre. QI
. 2 242
, Y m#n£v 2v
. v A A8 Am An AT + D(an + Dy = 2) [T 80a),
n I#m,n,v
m
- > ~
7 AN
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We have not written out the third term (29) because it is just a complex conjugate of the second one. Observe
that all the diagrams in the first line ¢29) are O(1) with respect to largé because all of the summations are lost
due to the external couplings (compare with the previous section). On the other hand, the diagram in the second line
contains two purely-internal couplings and is therefor&/€)( This is because the number of indices over which the
summation survives is equal to the number of purely internal couplings. Thus, the zero-valent graphs are dominant
and we can write

(B1) wl’[é(m) >k +A2ADV, 2IAL,, 12, ., A2 AL + O(1/N)]. (30)

Jj.m,n
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For (Bo)y we have
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The second term i{B1) contains one summation because its graph has one purely internal coupling. This term
is N times smaller than the largest terms By ), (which have 2 surviving summation indices). All the other terms
in (31) contain no summation at all because all their dashed lines are coupled externally.

Similarly, the leading contribution t¢B3),, will be given by the zero-valent graph with the maximum possible
number of internal couplings (which is equal to 2 in this case). Because &ftlikere are no graphs with just one
internal coupling, but there are graphs with all the dashed lines coupled externally. Thus,

m
//"\

7

S L+ 0/N?)

=2 [o(u) 32 (0 + N2A2) VP AT 207, A% A2 1+ O(1/N?)],
l

s (32)
Summarising the results of this section we can writefor
Jp = H 8(u) Y (hj + AZARVi, PIAL 1280, 1, + 21V P AT 287, 1A2 AZ[1 + O(1/N)]. (33)
J.m,n

Thus, we considered in detail the different terms involveghiand we found that the dominant contributions come

from the zero-valent graphs because the have more summation indices involved. This turns out to be the general
rule that allows one to simplify calculation by discarding a significant number of graphs with non-zero valence.
After this observation finding the rest of the ternisto Js, becomes a routine task and we therefore move it to the
Appendix B

4.4. Equation for Z

Now we can observe that all contributions to the evolutioZ ghamelyJ; — Js, see the previous section and
Appendix 2) contain factd[, §(x;) which means that the phase factpyg remain a set of statistically independent
(of each other and o&'s) variables uniformly distributed os®. This is true with accuracy @f) (assuming that
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the N-limit is taken first, i.e., IN < €2) and this proves persistence of the first of the “essential RPA’ properties.
Similar result for a special class of three-wave systems arising in the solid state physics was previously obtained
by Brout and Prigogingl6]. This result is interesting because it has been obtained without any assumptions on the
statistics of the amplitudgsi} and, therefore, it is valid beyond the RPA approach. It may appear useful in future
for study of fields with random phases but correlated amplitudes.

Let us now derive an evolution equation for the generating functional. Using our resulis-foss in (18) and
(17)we have

327(0)
= €2 2 25J mi2 2
2N =20 =€) (k RS >[| o180 84+ 2IVRPIAT P8 2
J.m,n
9 d 3
2
#4632 by [V PEO. gy + VAP~ (5~ 51 )
Jm,n
92(0) 2 53Z(0)
2¢ AjA ZVJ Y A V 2gn  |AR |2 (34
T or ,/ + /¢Zk” [ | kn k+n| | +| | +k| k| ]—8/\18k,18kk + cc ( )

Here partial derivatives with respecttpappeared because of the factors. This expression is valid up todY
and O€?/N) corrections. Note that we still have not used any assumption about the statisfitss Bhis is a
linear equation: as usual in statistics we traded nonlinearity for higher dimensions. The last term here “spoils” the
separation of variables and, therefore, puts a question mark on the independence of atiatotes each other
on the nonlinear time.

Let us nowN — oo limit followed by T ~ 1/¢ — oo (we re-iterate that this order of the limits is essential).
Taking into account that lif, o E(0, x) = T(78(x) + i P(1/x)), and limy_, o |A(x)|2 = 27T5(x) and, replacing
(Z(T) — Z(0))/T by Z we have

52

; 2 2 2 2
7 = dre / {(x TRLEA )[v,fm S + 2V O8]

j 8 8 s\ 8z

2 2
w2 ["V’ﬁ"' g5+ VPO (m‘mﬂm
3

2 2
24 o[ =2 Vit 285, 10 8(@ihn) + 1V 28 8(0] 55 S

} dlk j clk,, dlk,. (35)

Here variational derivatives appeared instead of partial derivatives becauseNof-theo limit.

4.5. Equation for the PDF

Taking the inverse Laplace transform(86) we have the following equation for the PDF,
: S8F;
=— | —dk; 36
P / 55, J (36)
whereF; is a flux of probability in the space of the amplitude
. 8
Fj = 4ne? f {(|v,{m|25(w i + 20V 28(",)8%, ) [snsmP -5 ,snsmp)]
Sj

- 2P[| mn|28(w )5m+nsjsm + |le/in 28(6()]’”)8]+m(SjSm - Sjsn)]

— 2V, 1P8(e,)8 0 — 21V,

|28(wmn)8m+n) Ss (SanSmP)} dkm dkn- (37)
m
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This expression can be simplified to

. 5P
—/{(l |25(a) )5m+,1+2|yjly,l|25(w )5,+m)snsn18_

Sj

2
 4re S

+2P(|V}, 128(",)8" Vi 28(@], )80 )sm + 20V 2, 128", )8

J+m — Jj+m

- 2| mn|28(a)mn)8m+n)snsm ;P } dk dk (38)

This equation is identical to the one originally obtained by Pej&Bfand later rediscovered by Brout and Prigogine

[16] in the context of the physics of anharmonic crystals. Zaslavskii and SafiBewere the first to study this
equation in the WT context. However, the analysi§l&—17]was restricted to the interaction Hamiltonians of the
“potential energy” type, i.e., the ones that involve only the coordinates but not the momenta. This restriction leaves
aside a great many important WT systems, e.g., the capillary, Rosshy, internal and MHD waves. Our result above
indicates that the Peierls equation is also valid in the most general case of three-wave systems.

Here we should again emphasise importance of the taken order of likits, oo first ande — 0 second.
Physically this means that the frequency resonance is broad enough to cover great many modes. Some authors, e.g
[15-17] leave the sum notation in the PDF equation even aftee the O limit taken givingé(wﬁm). One has to
be careful interpreting such formulae because formally the RHS is nil in most of the cases because there may be
no exact resonances between the disdtet@des (as it is the case, e.g., for the capillary waves). In real finite-size
physical systems, this condition means that the wave amplitudes, although small, should not be too small so that
the frequency broadening is sufficient to allow the resonant interactions. Our functional integral notation is meant
to indicate that the&v — oo limit has already been taken.

5. Approximate independence of the amplitudes

Variabless; do not separate in the above equation for the PDF. Indeed, substituting
N, (a) pla) (@)
P = plp - pla (39)

into the discrete version of38) we see that it turns into zero on the thermodynamic solution \mjfﬂ =
w;jexpw;s;). However, it is not zero for the one-mode PIBF) corresponding to the cascade-type Kolmogorov—
Zakharov (KZ) spectrumkz ie., P(“) (1/nkz) exp(— s]/nkz) (see next section), nor itis likely to be zero for any
other PDF of form(39). ThIS means that, even initially mdependent the amplitudes will correlate with each other
at the nonlinear time. Does this mean that the existing WT theory, and in particular the kinetic equation, is invalid?

To answer to this question let us differentiate the discrete version of th€3gpwith respect tol’s to get
equations for the amplitude moments. We can easily see that

3((A% A%) — (A5)(A%)) = O(*)  (j1. j2 € By). (40)

if (A2 A32A33> (Az.l)(Az.z)(Afa) (with the same accuracy) at= 0. Similarly, in terms of PDFs

8t( i1, 12(511, sz) - P(a)(Sjl)P(a)(sz)) = 0(64) (]1 J2 € BN) (41)

4, 4,
if P](1 ;2 inja(Sj1s Sjas Sjas Sja) = P(a (s,l)P(a)(s,Z)P(a)(s,a)P(a)(sj4) at r =0. Here P](1 j; inja(Sj10 Sj2s Sjas Sja)s

P jz(sjl, sj,) and P(”)(sj) are the four-mode, two-mode and one-mode PDF’'s obtained fedmy integrating
out all but 3, 2 or 1 arguments, respectively. One can see that, withaacuracy, the Fourier modes will re-
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main independent of each other in any pair over the nonlinear time if they were independent in every triplet
atr = 0.

Similarly, one can show that the modes will remain independent over the nonlinear time in any susset/éf
modes with accuracy//N (ande?) if they were initially independent in every subset of side+ 1. Namely

P i iz $iag) = PR (i) P (s -« P2 (s ) = OM/N) + O (ju. 2. -+ jus € By),
(42)

if pMILa _ pl@p@  p@ g,

JLJ2seees M4 j1 " J2 M+ . . . T .

Mismatch O/ N) arises from some terms in the ZS equation with coinciding indidesr M = 2 there is only
one such term in thBl-sum and, therefore, the corresponding error is/@(lwhich is much less than @) (due
to the order of the limits itN ande¢). However, the number of such terms growsvhand the error accumulates to
O(M/N) which can greatly exceed € for sufficiently largeM.

We see that the accuracy with which the modes remain independent in a subset is worse for larger subsets an
that the independence property is completely lost for subsets approaching in size the etire s€t,One should
not worry too much about this loss becaisie the biggest parameter in the problem (size of the box) and the modes
will be independent in alM-subsets no matter how large. Thus, the statistical objects involvin§ratemmumber
of modes are factorisable as products of the one-mode objects and, therefore, the WT theory reduces to considerin
the one-mode objects. This results explains why we re-defined RPA in its relaxed “essential RPA’ form. Indeed, in
this form RPA is sufficient for the WT closure and, on the other hand, it remains valid over the nonlinear time. In
particular, only property40) is needed, as far as the amplitude statistics is concerned, for deriving the three-wave
kinetic equation, and this fact validates this equation and all of its solutions, including the KZ spectrum which plays
an important role in WT.

The situation were modes can be considered as independent when taken in relatively small sets but shoulc
be treated as dependent in the context of much larger sets is not so unusual in physics. Consider for example
a distribution of electrons and ions in plasma. The NHparticle distribution function in this case satisfies the
Liouville equation which is, in general, not a separable equation. In other wordssghgicle distribution function
cannot be written as a product Nfone-particle distribution functions. However, &hparticle distribution can
indeed be represented as a produdtiaine-particle distributions i#7 <« Np, whereNp is the number of particles
in the Debye sphere. We see an interesting transition from a an individual to collective behaviour when the number
of particles approacheasp. In the special case of the one-particle function we have here the famous mean-field
Vlasov equation which is valid up to O(&p) corrections (representing particle collisions).

6. One-mode statistics

We have established above that the one-point statistics is at the heart of the WT theory. All one-point statistical
objects can be derived from the one-point amplitude generating function,

A2

Za(nj) = (€747),
which can be obtained from th¢-point Z by taking alli’s and all)’s, except fora ;, equal to zero. Substituting
such values t¢35) we get the following equation foz,,,

0Z,
7‘1 = AjnjZa+ (05n; = 1jv;)

0Z,

- 4
o (43)
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where,

nj = dne? f Vi, 128],,8(ct,) + 2V 267 8(em) iy dy ey, (44)

yj = 8re / (v, 28] 8(a)[jm)nm+|V 12878(ch) (1 — 1)) ke k. (45)

Correspondingly, for the one mode PIF{(s;) we have

P, OF
+ —
ot aSj

=0, (46)

with F is a probability flux in thes-space,

F=—s; (yP —}-n,iP) )
Eqgs.(43) and (46Wwhere previously obtained and studied29] in for the four-wave systems. The only difference
for the four-wave case was different expressionsjfandy. For the three-wave case, equation for the PDF was
not considered before, but equations for its moments were derived and sold&].im particular, equation for
the first moment is nothing but the familiar kinetic equatios —yn + n which givesy = yn for any steady state.
This, in turn means that in the steady state with= 0 we haveP](“) (1/n;)exp(=s;/n;), wheren; can be any
steady state solution of the kinetic equation including the KZ spectrum which plays the central role[:mMVT
However, it was shown if20] that there also exist solutions with # 0 which describe WT intermittency.

7. Phase statistics

Importantly, RPA formulation involves independefitase factorsy = € and notphasesp themselves. Firstly,
the phases would not be convenient because, as we will see later, the mean value of the phases is evolving and on¢
could not say that they are “distributed uniformly frepx to 7”. In fact, we will also see that the mean fluctuation
of the phase distribution is also growing and they quickly spread beyond their initiaide interval. But perhaps
even more important’s build mutual correlations on the nonlinear time wherg¢ésremain independent. This
will be shown later in this section, but we would like first to give a simple example illustrating how this property is
possible due to the fact that correspondence betweerd is not a bijection.

Let N be a random integer and let andr, be two independent (0 and of each other) random numbers with
uniform distribution betweer- andrn. Let

¢1,2 = 27N + r1,2.
Then

(¢1.2) = 21(N),

and

(p12) = 4% (N?).
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Thus,

(p1992) — (1) (2) = 4m>((N?) — (N)?) > 0,

which means that variableg and¢, are correlated. On the other hand, if we introduce

Y12 = €72,
then

(Y1,2) =0,
and

(Y1y2) = 0.

(Y1¥2) — (Y1) (Y2) = 0,

which means that variables andvy are statistically independent. In this illustrative example it is clear that the
difference in statistical properties betwegmndr arises from the fact that functiop(¢) does not have inverse
and, consequently, the information abdltontained inp is lost iny.

This illustration, although simple, captures the property that actually happens in reality as we will show below.
Let us use the following expression for the phase

¢; =3Ina;.

Substituting(8) and Taylor-expanding of logarithm inone gets

¢; =3In(@? + edl? + 2d?) = 6O + ep® + 24P, (48)
where
0 = 31nd©, (49)
ey
oM = Sﬁ (50)
J

W\2 @
1/a: a
@ _~| =L _J
; —**( 2 (m) * a@))‘ D
J J
Now let us perform averaging over the statistics of facipf8. As usual, the surviving terms are those in which
all ¥(@s cancel out due to their pairwise matchings. This is possible only if the numbgts is equal to the

number ofyy(?'s in the products defining these terms. Easy to see thattéven involves threg/(?’s and therefore
its average is zero. Therefore,

€ 1
A2\9< 2A2( (1)—(0))2+ (2)—(0)> (52)
J

(@,(1) — @) =
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Let us consider

1)—(0 i gy
((as. )C_lg- ))2)=< Z (V nman A m+n +ZV%amanA]nST_,_n)(VK/‘,aKaVAﬁU K+U+2V acay A Jn J+n)a >

m,n,k,v

Here, there are two terms with equal numberé?’s and v(@’s but all couplings of index to any other index
give zero becaus¥ = 0 if one of its wavenumbers is zero. Thl(lézg.l)c_lﬁ.o))z) = 0. The other term(ag.z)?zgo)W has
already been calculated before when evaluafing/Ve have

(@2dd),, 42[—| ViaPE, ],,)8) 1, A2 + [V E(0, —a/)8", (A2 — A2)]A3.

Let us take limitsN — oo andT — oo and replacé¢(T))y — (¢(0))y /T by (@w- We get

(@j)y = wnL, (53)
wherewy is the nonlinear frequency correction given by
: 1 1

wNL = 462[ [|v,,fm|27> (T) S i |vm|27>(w ) 87, (AL — 5)] A% diy, k. (54)
Dmn jn

HereP(x) denotes the principal value of the integral. Averaging over the amplitudes, we have

(¢j> = (wnNL),

where(wy ) is the amplitude-averaged nonlinear frequency correction

1 1
(wnL) = 4€ f Vi PP = | 80 — IVEPP = | 87 Gt — 1) | 1 ey Wl (55)
wmn Can

We can see that the mean value of the phase is steadily changing over the nonlinear time and, therefore, it would
be incorrect to assume that the phase “remains uniformly distributed-froto 7" even though this could be true
for t = 0. This is one of the reasons why we formulate RPA in termg ahd not$. Indeedy was shown above
to stay uniformly distributed on the unit circle over the nonlinear time.

The other reason is that, strictly speakipg do not stay de-correlated where's do (as shown before). We
already saw in the beginning of this section that this situation is possible due to the fact that the-map= &
is not a bijection. Let us now study such a build-up in statistical dependence of the phases, let us consider correlator

Fik = (¢ — ()b — (D)) = (bjdx) — (¢)) (¢k). Attime T we have

TisD) = Fii+ T+ ST 6)
where

Fh = 0P80 — 0,

Fii = 0200 + @06, 67)

FE = ¢V + 06 0) + 26 — 6Py e — 62 6.



140 Y. Choi et al. / Physica D 201 (2005) 121-149
Here, we have taken into account that, as we showed ealﬂ/ = 0. Let us consider the-term ik €0

(6P = 3(@PaN) =3 Y Vi aman i) My + 2V i@ jbi) AT . (58)

k,m,n

In this expression, we have a factgrwhich enters directly and not via the combinatign= €% . Potentially, this
could greatly complicate the situation because to objectsike;) knowledge of the statistics gf is not sufficient
and one needs the full PDF ¢f. Fortunately, however, this does not cause problems here because, no matter what
index is matched t&, matching of the two remaining indices resultsiin= 0. Therefore, the contribution of thke
terms is nil.
Let us now consider th.é(/z,z starting with

(2) ,(0) ( ) ( ) (0) (1) ) (2)_(0) (0)

2),(0 ~ 1 J J 0 —(0 2 1

¢_ ¢ = (3| —=( =2 + = ¢ qj 59
< J Tk M’ <g 2( 50)) SO) > < 244( ) 4] > ( )

We see that the square bracket on the RHS involves an even number (four org)rofach term. Thus, in order

for these terms to survive thegeés must cancel out which is possible when their indices match in a pairwise way.
But this means that index(of ¢;) does not match to any of the indicesywt and, therefore, the averaging ¢f

can be taken separately because it is statistically independent of all other phasesﬁblmswe conclude that
(¢§2)¢£0)>w = (¢§2)) (qb(o)) and these terms drop outﬁf ) The remaining term iF2 Tk is

O O\ /O A Do V7
<¢(1)¢(1)> 1 aL _ aL aL — aL 1 + cc
T2 RO AR 2 a§°)a,i°) aﬁo)a/(co)
242 242 j+k 2 2
= 2V P18 Gy PAT 21V PIaS PR+ 2V Pa T PAT
+—22[| L BIAL 28], + 2V AT 2s 1 AZA2. (60)
J I,m

We can now average over the amplitudes and take liMmits oo ande — 0 and write

Fik —4ne2[|vk(] o280k + 1V P8y + 1V ALY

27'[6

/ (Vi) 28], )81, + 21V (26(e)8T Ty kg . (61)

Presence of the first term on the RHS indicates that the phasesjettla@d thek-th modes get correlated on the

nonlinear time. This correlation is week in a sense #igthas a sharp peak at= k but the integrated contribution

of all j # k is of the same order as the value at the contribution ofjteek peak and, therefore, could cause a

problem should one tried to build RPA based on the statistigssafather than/’s (which remain de-correlated).
Let us consider a special case (6fL) for j = k which is interesting because it allows one to calculate the

dispersion in phases,

ok = (¢2) — (dn)>.

5 There is of course also a possibility thatouples simultaneously to both indices in a pair, but this contribution contaibysV less terms
and, therefore, should be ignored.



Y. Choi et al. / Physica D 201 (2005) 121-149 141

We have

o = & (62)
ng

whereny is defined in(44) andn; = (|ax|?). One can see that the RHS here is always positive and, therefore, the
phase fluctuations experience an unlimited growth. On stationary spectra, this grewgfr iwhich corresponds to

o ~ t. Recall that the mean value of the phase is also changing in time with theyatend on stationary spectra
this change is linear in time.

8. Discussion

In the present paper, we considered evolution of theNuthode objects such as the generating functional and
the probability density function for all the wave amplitudes and their phase factors. We proved that the phase factors,
being statistically independent and uniform$hinitially, remain so over the nonlinear evolution time in the leading
order in small nonlinearity. If in addition the initial amplitudes are independent too, then they remain so over the
nonlinear time in a weak sense. Namely, all joint PDF’s for the number of mides N split into products of the
one-mode densities with ®{/ N) and O€?) accuracy. Thus, the fuN-mode PDF does not factorise as a product
of N one-mode densities and the Fourier modes in the set considered as a whole are not independent. However,
the wave turbulence closure only deals with the joint objects of the finitd\biakevariables while takingy — oo
limit. These objects do factorise into products and, for the WT purposes, the Fourier modes can be interpreted as
statistically independent. In particular, the derivation of the kinetic equation for the energy spectrum deals only
with the one-mode and the two-mode distributions and is, therefore, justified by the results of the present paper.
Generally speaking, our results reduce the leading-order WT problem to the study of the one-mode amplitude PDF’s
and they validate the generalised RPA technique introducf®i20]. Such a study of the one-mode PDF and the
high-order momenta of the wave amplitudes was donfl$20] It was shown, in particular, that anomalous
probabilities of large wave amplitudes can appear in the form of a finite-flux solution in the amplitude space
caused by a wave-breaking amplitude cutoff. The reader is referred to these papers for the discussion of the WT
intermittency.

Although our results indicate that correlations between 2 or moregbiMt) modes do not appear in the leading
(i.e.,€?) order for the three-wave systems, they definitely appear as corrections in the nex)@eler. Our paper
is concerned with the main order statistics only in which the main evolution happens in the one-mode objects, e.g.,
the one-mode amplitude distributions. For study of the multi-mode correlations developing in WT in the next order
in € the reader is referred to pap¢?4,22]

We have also considered correlators of the phase and we showed the relation between the statistical properties
of the phase and the phase factois = €. We showed that the mean ¢fand its fluctuations about the mean
grow in time and, therefore, there exist no-@ide interval in which the phase would remain uniformly distributed.
Moreover, phaseg become correlated at different wavenumbers that lie on the resonant manifold. These properties
make the phasg an inappropriate variable for formulating the RPA method of WT description. On the other hand,
our work shows that the phase factgrs= € do remain statistically independent and uniforms3rwhich makes
them the right choice for the RPA formulation.

The present paper deals with the three-wave systems only. The four-wave resonant interactions are slightly more
complicated in that the nonlinear frequency shift occurs at a lower order in nonlinearity parameter than the nonlinear
evolution of the wave amplitudes. To build a consistent description of the amplitude moments one has to perform
a renormalisation of the perturbation series taking into account the nonlinear frequency shift. This derivation will
be published separately, whereas here we just announce its main result, the four-wave generalisation of the Peierls
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equation for the PDF. It has the same continuity equation {@®hbut now the probability flux is

A o i L b ) ) 3
Fj = 4ne ; Wésa(w£3)5£3S1S253Sj (E + 551 852 ba P, (63)

where W{ is the four-wave interaction coefficient and"" = a)l“ +Q+ Q- Q- Q with Q=
2y, Wlll’fnﬂ being the nonlinear frequency shift. As wee see this equation is even more compact than its three-

wave analog. In addition to the derivation of this equation, we will also analyse its properties and consequences for
the mode correlations and intermittency in four-wave turbulent systems.
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Appendix A
Let us obtainZ(7) in terms of the series in small nonlinearity up to the second orderAs an intermediate

step, we first consider separately the amplitude and the phase ingredi@ras@substitute the-expansion oa
from (8) into their expressions,

il _ i@+ _ p1a® e @DaO4aDaO)+ e 10D+ PO +ad%)

2
1,02
— gile)] {1 + (@ + @) 1 & 1dPP + (@Pd? + 7P + J(a(l)—(o) + a2

402
=&Y (1 + earj + az)), (64)

and

K Hi
1/,"/‘ ( PO + ea(l) +e a(z)) 3 O ( 1+ 6(a(l) /a(O)) + ez(a(Z) /a(O))) )
i = =

i + *1)+62*2) T\ @/ 1 @@l

0 ”i o 9 a? i HO)
1/f()u; 1+ ]J +62]1 +__J<_]_l>< )
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T SR 10 b M N 0 &
S VO 2a5,0>+22(2+1)(a50)

o ui (dD a® wi(d® @\ FONG

— O DD )y | B (D Bl (B _q) (=
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J J

J

1 1

Wiy ag) Mjla()l2 _ i 24 65

+(—+> o) |7 0 =" (14 €p1j + € p2)), (65)
2 4j Aj
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whereay, a2, f1; andpz; denote the linear and quadratic contributions into the amplitude and phase parts of
respectively,

oy = 25(@V70 + 700, (66)
22
wzj = 1+ 1242002 45D 1 ZdPaD) + ?f(ag.l)aﬁ.o))z + @Pal?y?, (67)
pr, = - (0)2( D70 — GO, 68)
(O 1)\ 2 @2
o D70 G20y K| (M aj’ aj’ wila;”|
Gy (0)2( “ vy {( 2 1> (ag.f’)) +(2 +1) (a(.o)) } aal2 ©9)

J

Substituting expansion($4) and (65)nto the expression faz, we have

al? 7 1 A2 ;
Z(T) = G )N <1_[ ghlal (az) > = oY <17[ A 1+ eay + ]y L + ey + €2ﬂ211>

1 2
! j F
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~ @)Y j j

I I

1
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J#k

I3

For partsl1, I> and /s in the above expression we have,
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Exploiting the propertyZ{i, —u} = Z

At r = T we have forX{x, u}

X(T) = X(0)+ (Zn)2N<

where
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where(-) 4 and(-),, denote the averaging over the initial amplitudes and initial phases respectively. We remind that

such individual averages are possible because the amplitudes and the phases are statistically independent from eac
other atr = 0.

Appendix B

B.1. Calculation of/3

0 2 O
J

1 J "

<1_[ 1//(O);u Z ( 2A]2> Z [2V, (= V™ anacay Elope, @), 182,
J

J Jom,n, kv
— ZV,ﬁvanaKEvE[w,ﬁ',’(, a)] ]8m+v)8m+n + 2Vm( ana,(avE[a)K,,, — ]8K+V
— 2VE anaay El—of, . —h185 )80, + 2V (VE apaca, 8y E[— o', —a'h]
+2V¥ amaKa,,E[a)vm, - ]5n+v)5j+n]5j> ) (77)
¥

The terms to be averaged here can be drawn as
7 N KR 7 . K 7 . K
\/'-77-(/ + \/77’/ + \></
YA\ ook X

n v n 14 n v

o

=N
()
=
<
=

A AR

n
+ + EE B + EE SN
AN /) YA\
n v m v m V. (78)

Let us now average over the random phases. Again, the leading order terms will be given by the diagrams with the
largest number of internal couplings. They will arise from the terms (the 2nd, 3rd and the 6th graphs) because
they allow 2 internal couplings in each of them. There are also possibilities to have one internal and two external
couplings of the dashed lines—such terms will give a/@{Lcorrection to the leading order. Therefore,

. J J
- g - <
ad \\ Vad \\ ad n \\
/ / / -
J3 = \....>...I\ + 2 \») + \...4..../\ [1.;,_()(1/]\,)}
\\ m P N m // \\ ,

n n m . (79)
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B.2. Calculation of/,

A2 . . TR
— O Jo P (Hi JFi | (D~0)y2
J4_<17[w1 Z|:2+4A;1(2 1)+2A§:|(aja])>
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i MR\ Rk
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X (Vi pman NS85 o + 2V aman A 6", Y (Vivacay Nst,, + Z\ZKvaKav&;fzS'}:_n)E§> : (80)
4

Graphically, the 4 terms to be averaged in this expression are

m \)/A\</ K +’ITL \)/A\// K
e AN # A

N\
n _ v n , v

_:TL \\/A\</ K _:n \\/A\// K
PO N A

n 1% n V.

Note that there is no dotted lines in these graphs because for each summation index there is a correspondin
wave amplitude present. As a consequence, the rule for the number of surviving summations is somewhat different
from what we had so far. Namely, the number of the summation indices after the phase averaging is one less thar
the number of the purely internal couplings. Easy to see that the phase averaging of the above terms always lead
to an external coupling of the dashed lineghich removes thg summation. Moreover, no more than one purely
internal coupling of the dashed lines is possible in any of these gfaphss, /4 contains no summation at all and
is only a O(% N?) correction to the main terms ify and Js.

B.3. Calculation of/s

Expression fot/s seemingly involves a great number terms. However, this number can be dramatically reduced
by the following speculation. Just as g there is no dotted lines in the graphs involved/inbecause for each
summation index there is a corresponding wave amplitude present. Thus, we have the same rule for the numbe
of summations surviving the phase averaging (i.e., one less than the number of internal couplings). In order to be
of the same order as the leading termgirand J3, we must have three purely internal couplings and, therefore,
no external couplings. This is only possible when the number of dotted lines directed to the vertices is equal to
the number of them pointing away which is true for & terms but not true for th&V andV'V terms. Thus, we

6 The only possibility of the double internal coupling would be in the last graph via joimingth v andk with n, but this would mear = 0
because of thé-symbols and, therefore, this term is nil.
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will only consider theV V terms. Further, the fact that there is no external couplings means that such terms are only
non-zero when all’s are zero. Thus, there will be no contribution from the second paf wiich has g« pre-

factor.

1
o= <1—[ YOS 5@ DF® + @ (O))a(l)c_lio)> [1+ O(1/N)].
i j#k "

where theV'V terms to be averaged here are

\/ /

C; =
/ / A
k
__le(O)m Z )\j)\kV 5m+namanajV,ﬁ,éﬁryaﬂ&ydkA%nA,f,,,
l JjFEkm v
o BN / /
/ / \
k
= _ Hz/;l(o)’“' Z )\j)\kao]_s_namanaijon_l_Va aydkA%A’;w
Jj#Ekmmn,u,v
m o J K
N 7 rd
o AN
n / 7 Nv
k
m
. N / /
/4 =

/ /\

k

(0)pu = AJ k
Hw Z NV 6 m+namana]VW(SHJF,,aﬁa,,akAﬁmAw.
JF#kmn,u,v

(81)
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By coupling the dashed lines we have in the leading order
k
/>“\
7 AN
; 2 A2IAT |2
(Cilp= 2 (--<a--7 = —2T6(u) D NIV oL, AT AR ARIAL P,

S o P4 l j#k.n
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TermC4 does not survive the averaging becajise k and a triple internal coupling is not possible. Summarising,

Js=2[T8Gu) Y =2V, 1280, 1AL, P+ Vi I287, | A% PI AT AZAZ [1 + O(1/N)]. (82)
1 JjFk,n
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