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Abstract

Turbulence closure for the weakly nonlinear stochastic waves requires, besides weak nonlinearity, randomness in
phases and the amplitudes of the Fourier modes. This randomness, once present initially, must remain over the nonlin
evolution time. Finding out to what extent is this true is the main goal of the present Letter. For this analysis we d
evolution equation for the full probability density function (PDF) of the wave field. We will show that, for any statist
the amplitudes, phases tend to stay random if they were randominitially. If in addition the initial amplitudes are independe
variables they will remain independent in a coarse-grained sense, i.e., when considered in small subsets which are
than the total set of modes.
 2004 Elsevier B.V. All rights reserved.

1. Introduction

The theory of stochastic wavefields in weakly nonlinear dispersive media has a long and exciting histor
started in 1929 when Peierls derived his kinetic equation for phonons in solids[1]. Applications of these idea
appeared in the physics of the ocean and atmosphere[2–8], laboratory and astrophysical plasmas[10–12], Bose
condensates and nonlinear optics[14], anharmonic crystals[1,15,16]. Any attempt to give a fair historical revie
would be doomed in such a short Letter and we refer an interested reader for further references to the book[17] and
a more recent review[18]. The common name that has arisen for all these approaches is wave turbulence (WT)

WT closure requires, besides weak nonlinearity, randomness in both the phases and the amplitudes of the Fo
modes. Namely, all the phases and all the amplitudes must be statistically independent of each other, in so
sense, and the phases must be uniformly distributed. Such an approach was recently formulated in[19,21] as
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a generalization of the random phase approximation (RPA)much loved by the physicists which, in its tradition
form, ignores the amplitude randomness[17]. We even kept the same acronym RPA but now read it as “Ran
Phases and Amplitudes”. Below, in Section2.1, we define explicitly what we mean by RPA. RPA does not
the shape of the probability densities of the individual mode amplitudes and, therefore, it allows one to c
wavefields with non-decaying correlations which is helpful because such long correlations tend to arise nat
in WT systems. In[19], we used RPA to describe the arbitrary-order moments of the wave amplitude, and[21]
we extended this approach to describing the one-mode probability density function (PDF) and considered s
for this PDF corresponding to intermittency. In these works, however, RPA was assumed (but not proven)
over the nonlinear time.

Such a proof is the main goal of the present Letter. We shall consider initial fields of the RPA type, and
prove that the RPA properties are preserved (i.e., no phase or amplitude correlations are generated with accu
sufficient for the WT closure) over the nonlinear evolution time. In order to do this we shall derive an evo
equation for the full multi-mode PDF which will turn out to be the Zaslavskii–Sagdeev (ZS) equation[13] (a
WT cousin of the Brout–Prigogine equation for anharmonic crystals[15,16]). We will show that, for any statistic
of the amplitudes, phases tend to stay random if they wereso initially. If, in addition, the initial amplitudes ar
independent variables they will remain independent in a coarse-grained sense, i.e., when considered in small s
which are much smaller than the total set of modes.

The original paper by ZS[13] was also devoted to the study of the applicability of the WT closure and, t
fore, it is appropriate here to mention in which way our approach is different. First, ZS consider the no
interaction arising from the potential energy only (i.e., the interaction Hamiltonian involves coordinates b
momenta). This restriction leaves out the capillary water waves, Alfvén, internal and Rossby waves, as
many other interesting WT systems. In our work we remove this restriction by considering the most gener
wave Hamiltonian equation(11) and we show that the multi-mode PDF still obeys the ZS equation in this
Secondly, ZS studied the phase statistics only, whereasour work considers both the phases and the amplitu
because the amplitude statistics is as important for the RPA closure as the phase statistics. Thirdly, ZS p
an argument that the nonlinear frequency correction removes the need for the initial phase randomness, whe
we only state the preservation of the initial phase randomness. However, the ZS criterion for phase randomiza
was obtained from a rather non-rigorous (although highly intuitive) physical argument whereas our results
from a systematic asymptotic expansion outlined in this Letter and the details of which will be published in a mo
extended paper[20].

The validation of the RPA properties gives this technique the status of a well-justified approach which,
the simplicity of its premises, is a winning tool for the future theory of non-Gaussianity of WT, its intermittency
and interactions with coherent structures.

2. Statistical setup

Let us consider a wavefielda(x, t) in a periodic cube of with sideL and let the Fourier transform of this field b
al(t) where indexl ∈ Zd marks the mode with wavenumberkl = 2πl/L on the grid in thed-dimensional Fourie
space. For simplicity let us assume that there is a maximum wavenumberkmax (fixed, e.g., by dissipation) so th
no modes with wave numbers greater than this maximum value can be excited. In this case, the total nu
modes isN = (kmax/πL)d . Correspondingly, indexl will only take values in a finite box,l ∈ BN ⊂ Zd which is
centered at 0 and all sides of which are equal tokmax/πL = N1/3. To consider homogeneous turbulence, the la
box limit N → ∞ will have to be taken.1

1 It is easy to extend the analysis to the infinite Fourier space,kmax= ∞. In this case, the full joint PDF would still have to be defined a
N → ∞ limit of an N -particle PDF, but this limit would have to be taken in such a way that bothkmax and the density of the Fourier mode
tend to infinity simultaneously.
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Let us write the complexal asal = Alψl whereAl is a real positive amplitude andψl is a phase factor whic
takes values onS1, a unit circle centered at zero in the complex plane. Let us define theN -particle joint PDFP (N)

as the probability for the wave intensitiesA2
l to be in the range(sl, sl + dsl) and for the phase factorsψl to be on

the unit-circle segment betweenξl andξl +dξl for all l ∈ BN . In terms of this PDF, taking the averages will invol
integration over all the real positivesl ’s and along all the complex unit circles of allξl ’s,

(1)
〈
f

{
A2,ψ

}〉 = ( ∏
l∈BN

∫
R+

dsl

∮
S1

|dξl |
)
P (N){s, ξ}f {s, ξ},

where the notationf {A2,ψ} means thatf depends on allA2
l ’s and allψl ’s in the set{A2

l ,ψl; l ∈ BN } (simi-
larly, {s, ξ} means{sl,ψl; l ∈ BN }, etc.). The full PDF that contains the complete statistical information abou
wavefielda(x, t) in the infinitex-space can be understood as a large-box limit

P{sk, ξk} = lim
N→∞P (N){s, ξ},

i.e., it is a functional acting on the continuous functions of the wavenumber,sk andξk . In the large-box limit there
is a path-integral version of(1),

(2)
〈
f

{
A2,ψ

}〉 = ∫
Ds

∮
|Dξ |P{s, ξ}f {s, ξ}.

The full PDF defined above involves allN modes (for either finiteN or in theN → ∞ limit). By integrating out
all the arguments except for chosen few, one can have reduced statistical distributions. For example, by in
over all the angles and over all butM amplitudes, we have an “M-particle” amplitude PDF,

(3)Pj1,j2,...,jM =
( ∏

l �=j1,j2,...,jM

∫
R+

dsl
∏

m∈BN

∮
S1

|dξm|
)
P (N){s, ξ},

which depends only on theM amplitudes marked by labelsj1, j2, . . . , jM ∈ BN .
Statistical derivations are greatly facilitated by the introduction of a generating functional

(4)Z(N){λ,µ} = 1

(2π)N

〈 ∏
l∈BN

eλlA
2
l ψ

µl

l

〉
,

where{λ,µ} ≡ {λl,µl; l ∈ BN } is a set of parameters,λl ∈ R andµl ∈ Z.

(5)P (N){s, ξ} = 1

(2π)N

∑
{µ}

〈 ∏
l∈BN

δ
(
sl − A2

l

)
ψ

µl

l ξ
−µl

l

〉
= L̂−1

λ

∑
{µ}

(
Z(N){λ,µ}

∏
l∈BN

ξ
−µl

l

)
,

where{µ} ≡ {µl ∈ Z; l ∈ BN } is a set of indices enumerating the angular harmonics andL̂−1
λ stands for the invers

Laplace transform with respect to allλl .

2.1. Definition of an essentially RPA field

A pureRPA fields can be defined as one in which all the phases and amplitudes of the Fourier modes
set of 2N statistically independent variables and in which all phase factorsψ are uniformly distributed on thei
respective unit circles. In such pure form RPA never survives except for in the uninteresting state of co
thermodynamic equilibrium. However, WT closure only requires an approximate RPA which holds up to cer
order in smallε and 1/N and only in a coarse-grained sense, i.e., for the reducedM-particle objects withM � N .
Below we give a relaxed definition of an (essentially) RPA property which, on one hand, is sufficient for th
closure and, on the other hand, is preserved over the nonlinear time.
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Definition. We will say that the fielda is of anessentially RPAtype if:

(1) The phase factors are statistically independent and uniformly distributed variables up toO(ε2) corrections,
i.e.,

(6)P (N){s, ξ} = 1

(2π)N
P (N,a){s}[1+ O

(
ε2)],

where

(7)P (N,a){s} =
( ∏

l∈BN

∮
S1

|dξl |
)
P (N){s, ξ},

is theN -particleamplitudePDF. In terms of the generating functional

(8)Z(N){λ,µ} = Z(N,a){λ}
∏

l∈BN

δ(µl)
[
1+ O

(
ε2)],

where

(9)Z(N,a){λ} =
〈 ∏

l∈BN

eλlA
2
l

〉
= Z(N){λ,µ}∣∣

µ=0

is anN -particle generating function for the amplitude statistics.
(2) The amplitude variables are independent in acoarse-grainedsense, i.e., for eachM � N modes theM-particle

amplitude PDF is equal to the product of the one-particle PDF’s up toO(M/N) andO(ε2) corrections,

(10)P (M,a)
j1,j2,...,jM

= P
(a)
j1

P
(a)
j2

· · ·P (a)
jM

[
1+ O(M/N) + O

(
ε2)].

As a first step in validating the RPA property we will haveto prove that the generating functional remains of
form (8) over the nonlinear time provided it has this form att = 0.

3. Weak-nonlinearity expansion

Consider weakly nonlinear dispersive waves in a periodic box with a dispersion relationωk which allow three-
wave interactions. Example of such systems includes surface capillary waves[2,7], Rossby waves[9] and internal
waves in the ocean[8]. In Fourier space, we have the following Hamiltonian equations,

(11)iȧl = ε

∞∑
m,n=1

(
V l

mnamane
iωl

mnt δl
m+n + 2V̄ m

ln āname−iωm
lnt δm

l+n

)
,

whereal = a(kl) is the complex wave amplitude in the interaction representation,kl = 2πl/L is the wavevector
L is the box side length,ωl

mn ≡ ωkl − ωkm − ωkm , ωl = ωkl is the wave frequency,ε � 1 is a formal nonlinearity
parameter. Here, the interaction coefficientV l

mn is obviously symmetric with respect tom andn but we do not
assume any further symmetries.2

2 Some additional symmetries involving permutations of the upper and lower indices arise,e.g., in solids due to the fact that nonlinear
is purely due to the potential energy which is a function of the displacement but not the rate of the displacement. Refs.[13,15,16]imposed
such symmetries which immediately rule out the capillary, internal andother waves in fluids for which such properties do not hold. Additio
symmetries also arise if the action variable is a Fourier transform of a real quantity, e.g., in the Rossby waves[9].
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In order to filter out fast oscillations at the wave period, let us seek for the solution at timeT such that 2π/ω �
T � 1/ωε2. The second condition ensures thatT is a lot less than the nonlinear evolution time. Now let us u
perturbation expansion in smallε,

(12)al(T ) = a
(0)
l + εa

(1)
l + ε2a

(2)
l .

Substituting this expansion in(11) we get in the zeroth ordera(0)
l (T ) = al(0), i.e., the zeroth order term is tim

independent. This corresponds to the factthat in the interaction representation, wave amplitudes are constant in t
linear approximation. For simplicity, we will writea(0)

l (0) = al , understanding that a quantity is taken atT = 0 if
its time argument is not mentioned explicitly. The first order is given by

(13)a
(1)
l (T ) = −i

∞∑
m,n=1

(
V l

mnaman∆
l
mnδ

l
m+n + 2V̄ m

ln amān∆̄
m
lnδ

m
l+n

)
,

where∆l
mn = ∫ T

0 eiωl
mnt dt = (eiωl

mnT − 1)/iωl
mn. Iterating one more time we get

a
(2)
l (T ) =

∞∑
m,n,µ,ν

[
2V l

mn

(−V m
µνanaµaνE

[
ωl

nµν,ω
l
mn

]
δm
µ+ν − 2V̄ µ

mνanaµāνĒ
[
ωlν

nµ,ωl
mn

]
δ
µ
m+ν

)
δl
m+n

+ 2V̄ m
ln

(−V m
µνānaµaνE

[
ωln

µν,−ωm
ln

]
δm
µ+ν − 2V̄ µ

mνānaµāνE
[−ω

µ
nνl,−ωm

ln

]
δ
µ
m+ν

)
δm
l+n

(14)

+ 2V̄ m
ln

(
V̄ n

µνamāµāνδ
n
µ+νE

[−ωm
lνµ,−ωm

ln

] + 2V µ
nνamāµaνE

[
ωµl

νm,−ωm
ln

]
δ
µ
n+ν

)
δm
l+n

]
,

where we introducedE(x,y) = ∫ T

0 ∆(x − y)eiyt dt .

4. Evolution of the generating functional and multi-particle PDF

Let us first derive an evolution equation for the generating functionalZ{λ,µ} exploiting the separation of th
linear and nonlinear time scales.3 To do this, we have to calculateZ at the intermediate timet = T based on
its value att = 0. The derivation, although standard for WT, is quite lengthy and will have to be publish
a longer paper. Here, we will only outline the main steps and give the result. First, we need to substitute theε-
expansion ofa from (12) into the expressionseλj |aj |2 andψ

µj

j = 1
2(ln

aj

āj
)µj . Second, the phase averaging sho

be done. Note that, because, we assume thatinitial phase factors are independent att = 0 with required accuracy
we can do such phase averaging independently of the amplitude averaging (which we do not do yet). Th
takeN → ∞ limit followed by T ∼ 1/ε → ∞ (this order of the limits is essential!). Taking into account t
limT →∞ E(0, x) = T (πδ(x) + iP ( 1

x
)), and limT →∞ |∆(x)|2 = 2πT δ(x) and, replacing(Z(T ) − Z(0))/T by Ż

(because the nonlinear time∼ 1/ε2 
 T ) we have

Ż = 4πε2
∫ {(

λj + λ2
j

δ

δλj

)[∣∣V j
mn

∣∣2δ(ωj
mn

)
δ
j
m+n + 2

∣∣V m
jn

∣∣2δ(ωm
jn

)
δm
j+n

] δ2Z

δλmδλn

+ 2λj

[
−∣∣V j

mn

∣∣2δ(ωj
mn

)
δ
j
m+n

δ

δλn

+ ∣∣V m
jn

∣∣2δ(ωm
jn

)
δm
j+n

(
δ

δλm

− δ

δλn

)]
δZ

δλj

(15)+ 2λjλm

[−2
∣∣V j

mn

∣∣2δj
m+nδ

(
ω

j
mn

) + ∣∣V n
jm

∣∣2δn
j+mδ

(
ωn

jm

)] δ3Z

δλj δλnδλm

}
dkj dkm dkn.

3 Hereafter we omit superscript(N) in theN -particle objects if it does not lead to a confusion.
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Here variational derivatives appeared instead of partial derivatives because of theN → ∞ limit. This expression
is valid up to the[1 + O(ε2)] factor. Eq.(15) does not containµ dependence which means that these varia
separate fromλ’s and the solution is a purely-amplitudeZ times an arbitrary function ofµ’s which is going to
be stationary in time. The latter corresponds to preservation of the initial

∏
δ(µl) dependence by Eq.(15) which

means that no angular harmonics of the PDF higher than zeroth will be excited. In the other words, all the
will remain statistically independent and uniformly distributed onS1 with the accuracy of Eq.(15) integrated over
the nonlinear time 1/ε2, i.e., with theO(ε2) accuracy. This proves the first of the “essential RPA” properties
fact, this result was already obtained before in[15] for a narrower class of 3-wave systems (seefootnote 2). Note
that we still have not used any assumption about the statistics ofA’s and, therefore,(15) could be used in future
for studying systems with random phases but correlated amplitudes.

Taking the inverse Laplace transform of(15)we have the following equation for the PDF,

(16)Ṗ = −
∫

δFj

δsj
dkj ,

whereFj is a flux of probability in the space of the amplitudesj ,

− Fj

4πε2sj
=

∫ {(∣∣V j
mn

∣∣2δ(ωj
mn

)
δ
j
m+n + 2

∣∣V n
jm

∣∣2δ(ωn
jm

)
δn
j+m

)
snsm

δP
δsj

+ 2P
(∣∣V n

jm

∣∣2δ(ωn
jm

)
δn
j+m − ∣∣V j

mn

∣∣2δ(ωj
mn

)
δ
j
m+n

)
sm

(17)+ 2
(∣∣V n

jm

∣∣2δ(ωn
jm

)
δn
j+m − 2

∣∣V j
mn

∣∣2δ(ωj
mn

)
δ
j
m+n

)
snsm

δP
δsm

}
dkm dkn.

This equation is identical to the Zaslavskii–Sagdeev (ZS)[13] equation (Brout–Prigogine in the physics of cryst
context[15,16]). Note that ZS equation was originally derived in[13] for a much narrower class of systems, s
footnote 2, whereas the result above indicates that it is also valid in the most general case of 3-wave systems. H
we should again emphasize the importance of the order of limits,N → ∞ first andε → 0 second. Physically thi
means that the frequency resonance is broad enough to cover a great many modes. Some authors, e.g., ZS
BP leave the sum notation in the PDF equation even after theε → 0 limit taken givingδ(ωn

jm). One has to be
careful interpreting such a formula because formally the RHS is null in most of the cases because there may be
exact resonances between the discretek modes (as it is the case, e.g., for the capillary waves). Thus, our func
integral notation is a more accurate way to write the result.

5. In what sense are the amplitudes independent?

Obviously, the variablessj do not separate in the above equation for the PDF. Substituting

(18)P (N,a) = P
(a)
j1

P
(a)
j2

· · ·P (a)
jN

(compare with(10)) into the discrete version of(17) we see that it turns into zero on the thermodynamic solu
with P

(a)
j = ωj exp(−ωj sj ). However, it is not zero for the one-mode PDFP

(a)
j corresponding to the cascade-ty

Kolmogorov–Zakharov (KZ) spectrumnkz
j , i.e.,P (a)

j = (1/nkz
j )exp(−sj /nkz

j ) (see next section), nor it is likely t
be zero for any other PDF of form(18). This means that, even if initially independent, the amplitudes will corre
with each other at the nonlinear time. Doesthis mean that the existing WT theory, and in particular the kineti
equation, is invalid?

To answer to this question let us differentiate the discrete version of Eq.(15)with respect toλ’s to get equations
for the amplitude moments. We can easily see that

(19)∂t

(〈
A2

j A2
j

〉 − 〈
A2

j

〉〈
A2

j

〉) = O
(
ε4) (j1, j2 ∈ BN)
1 2 1 2
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if 〈A2
j1

A2
j2

A2
j3

〉 = 〈A2
j1

〉〈A2
j2

〉〈A2
j3

〉 (with the same accuracy) att = 0. Similarly, in terms of PDF’s

(20)∂t

(
P

(2,a)
j1,j2

(sj1, sj2) − P
(a)
j1

(sj1)P
(a)
j2

(sj2)
) = O

(
ε4) (j1, j2 ∈ BN)

if P
(4,a)
j1,j2,j3,j4

(sj1, sj2, sj3, sj4) = P
(a)
j1

(sj1)P
(a)
j2

(sj2)P
(a)
j3

(sj3)P
(a)
j4

(sj4) at t = 0. HereP
(4,a)
j1,j2,j3,j4

(sj1, sj2, sj3, sj4),

P
(2,a)
j1,j2

(sj1, sj2) andP
(a)
j (sj ) are the four-particle, two-particle and one-particle PDF’s obtained fromP by inte-

grating out all but 4, 2 or 1 arguments, respectively. One can see that, with accuracyε2, the Fourier modes wil
remain independent of each other in any pair over the nonlinear time if they were independent in every triple
t = 0.

Similarly, one can show that the modes will remain independent over the nonlinear time in any subset ofM < N

modes with accuracyM/N (andε2) if they were initially independent in every subset of sizeM + 1. Namely

(21)

P
(M,a)
j1,j2,...,jM

(sj1, sj2, . . . , sjM ) − P
(a)
j1

(sj1)P
(a)
j2

(sj2) · · ·P (a)
jM

(sjM ) = O(M/N) + O
(
ε2) (j1, j2, . . . , jM ∈ BN)

if P
(M+2,a)
j1,j2,...,jM+2

= P
(a)
j1

P
(a)
j2

· · ·P (a)
jM+2

at t = 0.
The mismatchO(M/N) arises from some terms in the ZS equation with coinciding indicesj . ForM = 2 there

is only one such term in theN -sum and, therefore, the corresponding error isO(1/N) which is much less tha
O(ε2) (due to the order of the limits inN andε). However, the number of such terms grows asM and the error
accumulates toO(M/N) which can greatly exceedO(ε2) for sufficiently largeM.

We see that the accuracy with which the modes remain independent in a subset is worse for larger subsets
that the independence property is completely lost for subsets approaching in size the entire set,M ∼ N . One should
not worry too much about this loss becauseN is the biggest parameter in the problem (size of the box) and
modes will be independent in allM-subsets no matter how large. Thus, the statistical objects involving anyfinite
number of particles are factorisable as products of the one-particle objects and, therefore, the WT theory
to considering the one-particle objects. This results explains why we re-defined RPA in its relaxed “essent
form. Indeed, in this form RPA is sufficient for the WT closure and, on the other hand, it remains valid
the nonlinear time. In particular, only property(19) is needed, as far as the amplitude statistics is concerne
deriving the three-wave kinetic equation, and this fact validates this equation and all of its solutions, includ
KZ spectrum which plays an important role in WT.

The situation where modes can be considered as independent when taken in relatively small sets b
be treated as dependent in the context of much larger sets is not so unusual in physics. Consider for
a distribution of electrons and ions in plasma. The fullN -particle distribution function in this case satisfies
Louville equation which is, in general, not a separable equation. In other words, theN -particle distribution function
cannot be written as a product ofN one-particle distribution functions. However, anM-particle distribution can
indeed be represented as a product ofM one-particle distributions ifM � ND whereND is the number of particle
in the Debye sphere. We see an interesting transition from an individual to collective behavior when the
of particles approachesND . In the special case of the one-particle function we have here the famous mea
Vlasov equation which is valid up toO(1/ND) corrections (representing particle collisions).

6. One-particle statistics

We have established above that the one-point statistics are at the heart of WT theory. All one-point s
objects can be derived from the one-point amplitude generating function,

Za(λj ) = 〈
e
λj A2

j
〉
,
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which can be obtained from theN -pointZ by taking allµ’s and allλ’s, except forλj , equal to zero. Substitutin
such values into(15)we get the following equation forZa ,

(22)
∂Za

∂t
= λjηjZa + (

λ2
j ηj − λjγj

)∂Za

∂λj

,

where,

(23)ηj = 4πε2
∫ (∣∣V j

lm

∣∣2δj
lmδ

(
ω

j
lm

) + 2
∣∣V m

jl

∣∣2δm
jlδ

(
ωm

jl

))
nlnm dkl dkm,

(24)γj = 8πε2
∫ (∣∣V j

lm

∣∣2δj
lmδ

(
ω

j
lm

)
nm + ∣∣V m

jl

∣∣2δm
jlδ

(
ωm

jl

)
(nl − nm)

)
dkl dkm.

Correspondingly, for the one particle PDFPa(sj ) we have

(25)
∂Pa

∂t
+ ∂F

∂sj
= 0,

with F is a probability flux in the s-space,

(26)F = −sj

(
γPa + ηj

δPa

δsj

)
.

Eqs.(22) and (25)where previously obtained and studied in[21] in for four-wave systems. The only difference f
the four-wave case was different expressions forη andγ . For the three-wave case, the equation for the PDF
not considered before, but equations for its moments were derived and solved in[19]. In particular, the equatio
for the first moment is nothing but the familiar kinetic equationṅ = −γ n + η which givesη = γ n for any steady
state. This, in turn means that in the steady state withF = 0 we haveP (a)

j = (1/nj )exp(−sj /nj ) wherenj can
be any steady state solution of th kinetic equation including the KZ spectrum which plays the central role
[2,17]. However, it was shown in[21] that there also exist solutions withF �= 0 which describe WT intermittency

7. Discussion

In the present Letter, we considered the evolution of the fullN -particle objects such as the generating functio
and the probability density function for all the wave amplitudes and their phase factors. We proved that th
factors, being statistically independent and uniform onS1 initially, remain so over thenonlinear evolution time
This result does not rely on any assumptions about the amplitude statistics and, therefore, can be used in fu
for studying systems with correlated amplitudes (but random phases). If in addition the initial amplitudes
independent too, then they remain so over the nonlinear time in a coarse-grained sense. Namely, all joi
for the number of modesM � N split into products of the one-particle densities withO(M/N) accuracy. Thus
the full N -particle PDF does not get factorized as a product ofN one-particle densities and the Fourier mod
in the set considered as a whole are not independent. However, the wave turbulence closure only deals
joint objects of the finite sizeM of variables while taking theN → ∞ limit. These objects do get factorized in
products and, for the WT purposes, the Fourier modes can be interpreted as statistically independent. These res
reduce the WT problem to the study of the one-particle amplitude PDF’s and they validate the generaliz
technique introduced in[19,21]. Such a study of the one-particle PDF and the high-order momenta of the
amplitudes was done in[19,21]and the reader is referred to these papers for the discussion of WT intermitte

Finally, we would like to mention the role of quasi-resonant interactions which, as we saw, do not produ
long-term effect at theε2 order considered in this Letter. However, these interactions do modify statisticsε4

order as was shown in[22]. Theε4 correction can be important for the realspace correlators which have Gauss
values at theε2 order for any (not necessarily Rayleigh) amplitude distributions.
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