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The circulation density and its role in 3D turbulence
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Abstract

The scaling argument applied to the vorticity cascade in 2D turbulence results in the well-known k3 energy spectrum.
Kelvin theorem for the velocity circulation generalizes the vorticity conservation law on the 3D fluids. Using the Kelvin
theorem and the incompressibility of the fluid one can derive Lagrangian conservation of a quantity having the physical
meaning of a circulation density. Integrated over the entire space, the powers of the circulation density form a series of
the motion integrals which coincides with the vorticity series in the 2D limit. We will discuss the question of applicabil-
ity of the scaling arguments to the cascades of the geometrical integrals in 3D turbulence. We will see that the cascades
of all but one circulation integrals are ruled out by the reconnection kinematics. The only exception is the integral cor-
responding to the total volume of the vortex tubes, whose cascade corresponds to the k> energy spectrum. Relation of
the circulation density to the Clebsch variables will be considered. We will see that the circulation density can be cho-
sen as one of the Clebsch variables. In the case of the stationary flows, such Clebsch variables becomes an action—angle
pair.

1. Lagrangian conservation of the circulation location on: this vortex line. Let us define a function
density a(r, t) such that
di
Consider an incompressible inviscid fluid. Due to afr.t) =1 ol Dl )

the incompressibility and according to Kelvin theorem
the volume o and circulation ¢ of a closed vortex tube
are conserved, so is the ratio o/c. Considering closed
vortex tubes with small cross-sectional areas s we

where the integral is taken along the vortex line pass-
ing through r. Since the integral (1) is conserved for
any vortex line moving with the fluid, the function
a(r, t) is a Lagrangian invariant, i.e., it is not chang-

have
ing along the fluid—particle trajectories,
_ s(ydl a ‘
ole=P = =P omy = ot M gaw,n+v-Var1) =0. 3)
where [ is the coordinate along the vortex line and w (/) Here v - lv(n 9 .15 lhef velocllty ’ Fl;rlctl'()n af(r;}:)
is the absolute value of vorticity at the corresponding hés p hbf sical meaning of a volume density of (he
circulation.
For continuous vorticity fields function «(r,?) is
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through the vorticity nulls and jumps at these surfaces.
The vorticity nulls and structure of the vortex lines in
their vicinity was considered by Greene [1]. Function
a(r. 1) can be also defined for open vortex lines if the
latter fill ergodically a 2D surface or a 3D volume,
see Appendix A. An interesting relation of the circu-
lation density with Eckart’s invariants is discussed in
Appendix B.

2. Circulation series of integrals

Consider the case in which all the vortex lines are
closed. According to (3), any function F(«) integrated
over the coordinate space is a motion integral,

/ F(a(r, t))dr = const. 4)

In particular, this gives the following series of positive
motion integrals:

In:/a"(r.t)dr. n=0.12 ... (5)

We require that the integration in Jy is carried out over
the support of «(r) (this is equivalent to the rule 0° =
0 in the integrand). For integral I to have a nontrivial
meaning some part of the flow has to be potential. We
will call (5) circulation series of integrals. In the 2D
limit, the circulation series transform into the well-
known vorticity series of integrals,

Jn :-/a)"(r.z‘)dr. n=0,12.... (6)

In this case, the vortex lines are open and the integra-
tion in (2) and (5) has to be taken over the unit length
along the vorticity.

3. Can the circulation integrals cascade?

Consider now homogeneous turbulence with a
source and viscous dissipation well separated in k-
space. Let the source term produce only closed vortex
lines. In the spirit of Kolmogorov’s scaling argument,
one can conjecture that there exists an inertial interval

for one of the integrals /, in which the turbulent en-
ergy spectrum E(k) is determined only by the flux P,
of this motion integral. Taking into account that E (k)
and P, have dimensions [L3/T?] and [T "~ 'L™")
correspondingly, we obtain

E(k) P’;’./(IH'I) k—(5r1+3)/(n+l). (7

As we see, the scaling argument applied to different
integrals I, predicts different turbulent spectra. There-
fore. the inertial interval in which [/, freely cascade
over the scales cannot exist simultaneously for ali the
circulation integrals.

In contrast, the scaling argument applied to any of
the 2D vorticity integrals (6) predicts the same expo-
nent for the energy spectrum. This follows from the
fact that the flux @, of integral J, have dimension
[T77~1] which does not contain L. Matching the di-
mensions, we have

E(k) cc QXD g3, (8)

The origin of such a difference between the 2D and
3D cases is in the fact that the 3D circulation integrals
(5) are nonlocal, whereas the 2D vorticity integrals (6)
are local. In the 3D case, any local reconnection event
due to small viscosity results in of-order-one global
changes in the integrand of (5) along the reconnect-
ing vortex tubes. The only exception is the case n = 0
which will be discussed separately. The changes in the
integrand of (5) arise via function o (r) which expe-
riences a jump due to the changes in the vortex-line
length associated with the reconnection. Namely, «(r)
increases if the reconnecting segments belong to origi-
nally different closed vortex lines which form a bigger
loop after the reconnection. If the reconnection occurs
on the segments of the same vortex loop and thereby
splits this loop onto two smaller ones, then a(r) will
decrease. The change in «(r) and, therefore, the inte-
grand of (5) occur at all the scales corresponding to
the sizes of the vortex tubes involved in the reconnec-
tion process. For small viscosity these scales are much
greater than the dissipation scale, and, therefore, the
inertial interval for /,,, n # 0, is absent and these in-
tegrals cannot cascade.

A different picture arises for /y which is nearly con-
served in the scales greater than the dissipation scale
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if the viscosity is small. Indeed, for small viscosity
the total volume of the reconnecting vortex tubes is
approximately the same before and after the recon-
nection. Therefore, / is the only circulation integral
for which existence of the inertial interval is not ruled
out by the reconnection kinematics. Correspondingly,
only the spectrum associated with the cascade of Iy is
selected from the family (7) as possible in 3D turbu-
lence,

E(k) o Pk . (9)

Of course, the cascade of Iy makes sense only if some
part of the flow is potential.

4. Relation of «(r, 1) to the Clebsch variables

Function a(r.t) possesses the properties of a
Clebsch variable [2,3]: it is a Lagrangian invariant and
it is constant along the vortex line. In fact, one can
use a(r, t) as the Clebsch variable in situations when
it is possible to introduce another Clebsch variable
such that

apr.ty+v-Var, 1) =0 (10)

and the velocity is related to «(r.7) and B(r.t) as
follows:

vir, 1) = BVa + Vo, (1

where ¢ is to be found from the incompressibility
condition,

divo = 0. (12)
In this case
w=Vax VS (13)

so that the vortex lines lie on the intersection of the
surfaces a(r, 1) = const. and B(r, 1) = const. Actually,
the Clebsch variables can always be introduced if there
can be found an arbitrary Lagrangian invariant y (r, r)
such that the vortex lines are parallel to Vo x Vy.
In Appendix C we show how to construct in this case
Clebsch variable B(r, t) satisfying (10) and (11).

Egs. (3) and (10) can be written in a Hamiltonian
form [2],

o =8H /8B, (14)
,p=—8H/8, (15)

where the Hamiltonian H is the kinetic energy of the
fluid,

1 5
H = —/v‘dr. (16)

2

It is worth mentioning that &~ plays the role of the
Jacobian of the transformation from the Lagrangian
coordinates to variables « and §. Indeed, for the vortex
tube bounded by the surfaces «(r.t) = «, a(r.t) =
a + da, B(r.1) = B and B(r,1) = B + dp the circu-
lation ¢ is de dB. On the other hand, according to (1)
the Lagrangian volume element d*r = o is related
to the circulation as 0 = c¢/«, and therefore dr =
o~ da dg.

Eqgs. (3) and (10) possess even larger than (4) family
of the motion integrals,

/ Fla(r.). B(r.t)) dru = const., (17)

where F is an arbitrary function. Yakhot and Zakharov
[3] derived the energy spectrum E (k) o k! assuming
that there exists an inertial interval for one of such
integrals, the “number of particles”,

N:/(a'3+ﬁ2)dr. (18)

As it was shown above, the reconnection breaks con-
servation of the first part of this integral, | o?dr,inthe
scales much greater than the dissipation scale. Thus,
at least for the considered here choice of the Clebsch
variables, the inertial interval for N is absent, which
makes realizability of the k~!-spectrum questionable.
As pointed out by Newell {4], the nonconservation of
N in large scales also follows from the fact that the
viscosity term in the equations for the Clebsch vari-
ables is nonlocal.

One remarkable property of « is that it is time in-
dependent for the stationary flows. This distinguishes
it from most of other Clebsch variables (remind that
there exist infinitely many Clebsch pairs describing
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the same flow). The time independence of « for the
stationary flows follows directly from definition (2).
From (3) one has the following tondition for the flow
to be stationary:

v-Va =0. (19)

On the other hand, the time independence of « means
that Hamiltonian (16) is independent of 8, see (14).
Thus, one can integrate the Eq. (15), which gives

B=ala)r+ u), (20)

where A(o) = —8H /S« and p(r) is a time indepen-
dent function which satisfies the following equation:

vV = —h. @1

As we see, in the case of stationary flows « and S play
the role of an action—-angle pair of variables.

5. Summary

The circulation density « defined by (2) is a La-
grangian invariant. This property allows to write the
circulation series of the motion integrals (5) which
transform into the vorticity series (6) in the 2D limit.
In contrast with the vorticity integrals in 2D, the circu-
lation integrals 7, cannot simultaneously cascade over
the scales. The nonlocal dependence of the circulation
integrals on the vorticity and the vortex reconnection
rule out the existence of the inertial interval for all
I, except for the integral Iy. The integral Iy (the to-
tal volume of the vortex tubes) is conserved during
the reconnection if the viscosity is small. The k3 en-
ergy spectrum, corresponding to the cascade of Iy, is
the only one from the family (7) which can possibly
develop in 3D turbulence. Of course, passing by the
integral I the “‘reconnection test”” does not guarantee
the realizability of the k~* spectrum, because it also
depends on validity of other assumptions underlying
the scaling argument, such as the scale invariance and
locality of turbulence.

In addition to being a Lagrangian invariant, the cir-
culation density « is constant along the vortex lines.
Combination of these properties allows to choose « as

one of the Clebsch variables (for the flows permitting
the Clebsch formulation). Advantages of using « as a
Clebsch variable are that it is explicitly related with the
observables (e.g., vorticity) and that it is time indepen-
dent for the stationary flows. From the latter property
it follows that the Clebsch pair become action—angle
variables for the stationary flows, with the circulation
density « being the action.

Appendix A

Function «(r, t) can be also defined for open vor-
tex lines if the latter fill ergodically a 2D surface or
a 3D volume. The idea for such a definition exploits
the fact that an ergodic vortex line starting at any
point r will return and approach the starting point as
closely as needed thereby forming “loops” with any
required accuracy. Consider points ry, k =0,1,2...,
such that rg = r, ry is the first point on the vortex
line which separated from the starting point r by a
given small distance 8, ry is the second such point,
etc. Since ry’s are not moving exactly with the veloc-
ity of the fluid, the integral frz"“ dl/w is conserved
only approximately with the error being proportional
to 8. According to Kac’s theorem [5], the mean length
of the vortex “loops” scales as 67", where #n is the
dimension of the space ergodically filled by the vor-
tex line. Thus, normalizing the averaged f,’k"“ dl/w
by 7" and taking the limit 8 — 0 we obtain an exact
Lagrangian invariant,

m Tk
o 1 di
a(r.1) = 1/lims_olimy o | 8 -n;; / oh
1

(A1)

Note that function a(r, t) is constant on the surface (or
volume) filled with a vortex line. In some particular
cases c(r, t) can be defined in a more direct way. Con-
sider, for example, the vortex lines filling some nested
toroidal surfaces. One can define function «(r, t) as
the ratio of the circulation and the volume of a hol-
low vortex tube lying in between of two adjacent tori.
This gives
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1) = ]/ﬁf dr x d/ (A2)
* - f(w(rl -n) dt’ '

where t and [ are the coordinates on the toroidal sur-
face parametrizing the “small” and the “large™ cir-
cles correspondingly. Another example is the vortex
line filling densely a 3D volume between two nested
toroidal surfaces. In this case « is the ratio of the vor-
ticity flux to the volume between the toroidal surfaces.

Appendix B

Let a(r, t) be a vector field such that
da—+ (v-Vya=0. (B.1)
Eckart’s invariants are defined as [6,7]:
wg = Vg x (uVyx +vV,y +wV,2), (B.2)

where u, v, w and x,y, z are the velocity and co-
ordinate components correspondingly, which have to
be considered as functions of @ when differentiated
with respect to a. The conservation law for w, reads

Owq + (v- Viwo, = 0. (B.3)

One consequence of this conservation law is

dl,
3+ (v- V))% = 0. (B.4)

|(1)(,|

where w, is expressed in terms of a, and the integral is
taken in the a-space along such a contour the image of
which in the r-space is the vortex line passing the point
r. One can choose a(r. 1) to be the initial coordinates.
According to (25), in this case w, = w(r(a,0).0),
that is w, coincides with the initial value of vorticity
atr = a. Therefore, the integral in (B.4) is just another
representation of the circulation density.

Appendix C
Let us introduce a variable y(r,r) such that the

vortex lines lie on the intersection of the surfaces
y(r,t) = const. and a(r.t) = const., so that the vor-

ticity is directed along Vy x Ve, and which does not
change along the fluid—particle trajectories,

qyr. )+ (v-V)y(r.t)=0. (C.1)

According to (1) and (2), one can write the follow-
ing expression for the absolute value of vorticity:

w(r)| = -—% () di, (C2)

where s(/) is the cross-sectional area of a thin vortex
tube (passing through the point r) at the distance /
from the point r along the vortex line. Let us consider
a vortex-tube bounded by surfaces y(r) = y1, y(r) =
2, a(r) = o) and a(r) = a3, where y|, 2. o) and o3
are some constants. The cross-sectional area for such
a tube is

_ Inn = rallag —ay|

CJ3
IVy x Va| €3

Substituting (B.1) into (A.2) and taking into account

that the vorticity is directed along Vy x Va, we arrive

at the expression for the vorticity in terms of variables

« and y,

w=(Vy x Va)a f —i— (C4)
[IVy x Vy|

o,y =const.

Expression of the velocity in terms of « and y is

v(r) = flo, y)Va + Vo, (C.5)
where
d!
= ! _ .6
fla.y) = ud; % ) < val (C.6)
a.y=const.

and ¢ is to be found from the incompressibility con-
dition,

divw = 0. (C.7)

Finally, the Clebsch variables « and g satisfying (3),
(10), (11) and (13) are introduced by the change of
variable y — B = f(«, y). Note that the possibility
to find variable y with the described above properties
exists only for a limited class of motions not including,
for example, the nonzero-helicity flows,
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