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Breakdown of wave turbulence and the onset of intermittency
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Abstract

This Letter demonstrates that the kinetic equations for wave turbulence, the long time statistical behavior of a sea of weakly
coupled, dispersive waves, will almost always develop solutions for which the theory fails due to strongly nonlinear and
intermittent events either at small or large scales. 2001 Elsevier Science B.V. All rights reserved.

PACS:47.10.+g

Intermittency connotes burstiness and intermittent
signals display off-again, on-again characteristics in
which large fluctuations have significant impact on
higher order statistical moments. In three-dimensional,
hydrodynamic turbulence at high Reynolds numbers,
it is measured by studying the probability density
function (pdf) of velocity differencesδv(�x, �r)= v(�x+
�r) − v(�x) and their higher order moments, the struc-
ture functionsSN(�r)= 〈(v(�x + �r)− v(�x))N 〉, N � 2,
as functions of separation distancer. For small val-
ues ofr at the high wavenumber end of the inertial
range, but larger than the dissipation scale, it is found
that the tails of the pdf forδv(�x, �r) increase asr de-
creases. Large fluctuations dominate the higher order
moments [1]. As a result, the ratio ofSN to (S2)

N/2

which, from Kolmogorov ’41 theory [2], in the long
time, infinite Reynolds number limit would be con-
stant, diverges asr → 0. The events causing inter-
mittent behavior are believed to be associated with
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large fluctuations in the local dissipation rate but are
not well understood. In contrast, the long time statisti-
cal behavior of the one-dimensional turbulence associ-
ated with Burgers’ equation exhibits similar behavior
which is well understood and is associated with the
formation and accretion of shocks [3].

The surprising new result of this Letter (and it
is surprising considering that kinetic equations have
been studied in various contexts for well over sixty
years [4–6]!) is that, in non-equilibrium situations, a
wave turbulence field fed by sources and drained by
sinks, well separated in wavenumber space, develops
solutions so that, at a well defined length scalek−1

NL ,
the weak coupling approximation fails. The system
departs from joint-Gaussian statistics and strongly
nonlinear and intermittent events affect the dynamics.
We illustrate the breakdown in the contexts of deep
water gravity waves and optical waves in nonlinear
media.

We begin by summarizing wave turbulence theory,
the reasons for asymptotic closure, the Kolmogorov–
Zakharov (KZ) finite flux solutions and then present
the reasons for its breakdown. Letv(�x, t) be a spatially
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homogeneous, random, zero mean function of posi-
tion �x, the Fourier transform of whose pair correla-
tion function〈v(�x, t)v(�x+ �r, t)〉 is the spectral energy
densitye(�k). For deep water gravity waves,v(�x, t) is
the surface deformationη(�x, t). We decomposev(�x, t)
into the normal modesvs(�x, t) (left and right going
waves exp(i�k · �x + isω(�k)t), s = +,−) of its lin-
ear approximation (ω(�k)� 0, the linear dispersion re-
lation, e.g.,ω = √

gk, k = |�k|) and let
√
ωAs(�k, t),

s = +,−, be their (generalized) Fourier transforms.
To leading order in amplitude, the spectral energy
e(�k) is (1/2)

∑
s ω(

�k)ns(�k), where, using spatial ho-
mogeneity,〈As(k, t)A−s (k′, t)〉 = δ(�k + �k′)n−s (�k, t).
For simplicity, we taken+ = n− = n(k, t) = nk and
thene(�k) = ω(k)nk , wherenk is called the wave ac-
tion or particle number. It is natural to write the field
equation in Fourier coordinates,

dAs(�k)
dt

− isω(�k)As(�k)
=

∑
s1s2

∫
L
ss1s2
�k�k1�k2A

s1
(�k1)As2(�k2)

× δ(�k1 + �k2 − �k)d �k1d �k2
+

∑
s1s2s3

∫
L
ss1s2s3
�k�k1�k2�k3A

s1
(�k1)As2(�k2)As3(�k3)

× δ(�k1 + �k2 − �k3 − �k)
× d �k1d �k2d �k3 + · · · . (1)

Since most wave turbulence systems exchange spec-
tral energy via three or four wave resonances, it is
sufficient to retain only quadratic and cubic terms in
(1), the most general form of Hamilton’s equations for
waves in a dispersive medium; e.g., gravity, surface
tension, optical and Alfven waves. Wave turbulence
theory begins by writing the hierarchy of equations for
the spectral cumulants

Q(N)ss
′...sN−1(�k′, �k′′, . . . , �k(N−1), t

)
= (2π)−(N−1)d

×
∫
R(N)ss

′...sN−1(�r, �r ′, . . . , �r(N−2), t
)

× exp
(−i�k′ · �r − · · · − i�kN−1 · �rN−2)

× d�r . . . d�rN−2,

whereR(2)ss
′
(�r) = 〈vs(x)vs ′(�x + �r)〉 andR(N) is the

spatial cumulant of orderN obtained by subtract-

ing the unique combination of products of moments
from theN th order moment so thatR(N) decays as
|�r|, . . . , |�rN−1| tend independently to infinity. The hi-
erarchy is solved iteratively by writing eachQ(N) in
a power series in amplitude (ε say, 0< ε � 1) and
evaluating the behavior of each iterate (or, where ap-
propriate, its physical space transform) in the limit
ω0t→ ∞, εrω0t fixed for r = 2,4, . . . ,ω0 some typi-
cal frequency. Non-uniformities in time in the asymp-
totic expansion are removed by choosing theε2, ε4 co-
efficients in an asymptotic expansion for

(2)
dns�k
dt

= T2
[
ns�k

] + T4
[
ns�k

] + · · ·

and by renormalizing the frequency

sωk → sωk + sΩs2
[
nsk

] + · · · ,

(3)Ωs2
[
nsk

] =
∫
G�k�k1−�k1�kn�k1 d �k1.

(The functionG is defined below.) Closure is achieved
for two reasons. First, on time scales long with
respect toω−1

0 but short with respect to(ε2ω0)
−1,

the statistics approach a state close to joint Gaussian
because of the dispersive nature of the waves. Second,
the regeneration of the cumulantQ(N), N � 3, by
nonlinear terms is dominated over long times not by
Q(M),M >N , but by products of cumulants of order
less than or equal toN . In particular, Eq. (2) for the
wave action densityns�k (and therebye(�k)) is closed. It
is called the kinetic equation.T2[ns�k] is equal to

4π
∑
s1s2

∫ ∣∣Lss1s2kk1k2

∣∣2ns�kns1�k1ns2�k2
(
s

ns�k
− s1

n
s1
�k1

− s2

n
s2
�k2

)

× δ(s1ω1 + s2ω2 − sω)
× δ(�k1 + �k2 − �k)d �k1d �k2

and is nontrivial when thethree wave resonant man-
ifold defined bys1ω(�k1)+ s2ω(�k2) = sω(�k1 + �k2) is
nonempty for some choices ofs, s1, s2. It redistributes
energy density on the time scale(ε2ω0)

−1. If the three
wave resonant manifold is empty (which it is, for ex-
ample, ifω= ckα , α < 1),T2 = 0, then four wave res-
onances redistribute energy density on the time scale
(ε4ω0)

−1. Assumingn+ = n− and summing oversj ,
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the collision integralT4[nk] is∑
s1s2s3

∫ ∣∣G�k�k1�k2�k3
∣∣2n�kn�k1n�k2n�k3

×
(

1

n�k
+ 1

n�k1
− 1

n�k2
− 1

n�k3

)

× δ(ω+ω1 −ω2 −ω3)

× δ(�k + �k1 − �k2 − �k3
)
d �k1d �k2d �k3,

whereG�k�k1�k2�k3 is a linear combination ofLss1s2s3�k�k1�k2�k3 and

a quadratic product ofLss1s2�k�k1�k2 divided by frequency.

For three wave processes, one has (formally) conser-
vation of energy

∫
e(�k) d �k; for four wave processes,

both energy and total wave action are formally con-
served. The Rayleigh–Jeans solution of energy density
equipartitionns�k = T ω−1

k , and, in the case of four wave

processes,nk = T (ωk −µ)−1 are obvious.
Finite flux solutions of (2),nk = nk(τ,P ) for three

wave processes,nk = nk(τ,µ,P,Q) for four wave
processes, where the parametersτ,µ,P,Q, corre-
spond to temperature, chemical potential, energy and
wave action fluxes respectively, are less obvious. How-
ever, in cases for which the dispersionωk and coupling
coefficientsLss1s2k,k1,k2

,L
ss1s2s3
k,k1,k2,k3

are homogeneous ink
of degreesα,β, γ , respectively, power law (KZ) solu-
tions can be found by comparing powers ofk in

∂E(k)

∂t
= −∂P

∂k
, E(k)=Ωωkkd−1nk

(Ω is the solid angle ind dimensions) and in

∂

∂t
N(k)= ∂Q

∂k
, N(k)=Ωkd−1nk.

These cases are not rare [5,6]. For water waves,
ωk and the coupling coefficients are homogeneous
for roughly four decades of wavelength. For three
wave processesnk = c1P 1/2k−(β+d) (P is of order
ε4) describes the constant flux of energyP from
a source at lowk to a sink at high wavenumbers,
a forward cascade. For four wave processes,nk =
c2P

1/3k−(2γ /3+d) describes the forward cascade of
energy whilenk = c3Q1/3k−(2γ /3+d)+α/3 describes
the inverse/back cascade of wave action from a source
at intermediate (k1) wavenumber to a sink at low
wavenumber. (P,Q are of orderε6.) Observe that∫ ∞
k1
E(k) dk converges forβ > α for three wave

processes and for(2γ > 3α) for four wave processes
where also

∫ k1
0 N(k) dk converges forα > 2γ . We

then say that the spectrum hasfiniterather than infinite
capacity in that it can only absorb a finite amount
of energy (wave action) and requires a finite time
to establish the equilibrium spectrum and make a
connection to a sink.

For almost all choices ofα,β, γ , the premises on
which wave turbulence theory is based are violated.
An explicit formula for the length scale at which
breakdown occurs is given in terms ofα,β, γ,P,Q.
While here we carry out explicit calculations for
cases in which the KZ power spectra obtain, we
emphasize the phenomenon of breakdown is general
and a consequence of all finite flux solutions which
carry energy and/or wave action to scales at which
the weak coupling approximation may fail. In order to
calculate this scale we examine the (i) ratio of linear,
tL, to nonlinear,tNL, times where

tL ∝ ω−1
�k and tNL ∝ 1

nk

dnk

dt
= 1

nk
T2;

(ii) ratios of terms in theε-expansion of the kinetic
equationT2N+2/T2N , N = 1,2, . . . ; (iii) deviations
from joint-Gaussianity as given by the ratio of struc-
ture functionsSN (�r) to S(N/2)2 (�r) for small r and

the ratios of the cumulantsRN(�r) to R(N/2)N (�r) for
large r. All three criteria give thesamebreakdown
scale. On the KZ energy flux spectrum, the ratio
tL/tNL is P 1/2kβ−2α for three wave interactions and
P 2/3k2γ /3−2α for four wave; the wave action spectrum
givesQ2/3k2γ /3−4α/3. To see this, note

tL

tNL
= 1

ωknk

dnk

dt
= T2

ωknk
∼= k

2βPk−2(β+d)k−αk2d

kαP 1/2k−(β+d)

= P 1/2kβ−2α.

Below, we show that large deviations from joint-
Gaussianity for the direct energy cascade occur at
small r when P 1/2r2α−β ∼ 1 for three-wave or
P 2/3r2α−2γ /3 ∼ 1 for four-wave interactions. For the
(inverse) cascade of wave action the deviations oc-
cur at larger whenQ2/3r4α/3−2γ /3 ∼ 1. Satisfying
these relations defines a length scale,k−1

NL = rNL. It
can happen thatkNL lies within the window of trans-
parency between the forcing (kf ) and dissipation (kd )
scales in which the KZ solutions obtain. In the limit
of zero forcing,P → 0 andkNL lies outside the win-
dow, but even for modest forcing and smallkf and
largekd , kf < kNL< kd . Forβ > 2α (γ > 3α), kNL is
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large. The KZ spectrum is valid forkf < k < kNL

but, for kNL < k < kd , there is a region of anom-
alous scaling and complete breakdown of wave turbu-
lence. In exactly the same range, the asymptotic series
for frequency renormalization also becomes nonuni-
form. For β < 2α (γ < 3α), kNL is small and wave
turbulence breaks down forkf < k < kNL but is re-
paired inkNL< k < kd . On the wave action flux spec-
trum,kNL is defined byQ1/3k

γ/3−2α/3
NL ∼ 1 and break-

down occurs for 0< k < kNL when 2α > γ and for
kNL< k < kf whenγ > 2α.

We now calculate (details are in [6]) for three
wave interactions theN th order structure function
SN(�r) (for small r; we examineRN for larger) and
the parameter ranges for which it is dominated by
the universal KZ spectrum. For each expansion of a
Fourier space cumulant, there is a leading term in the
limit of long time which depends only onn(�k, t) and
no other cumulant. The first surviving part ofQ(3) is
given by

2P0,0′,0′′
√
ωkωk′ωk′′ L

s−s ′−s ′′
�k−�k′−�k′′n�k′n�k′′

× (
πδ(sω+ s′ω′ + s′′ω′′)
+ iP (sω+ s′ω′ + s′′ω′′)−1)

and determines the scaling ofS3(�r) as well as the
integrand ofT2 in the kinetic equation (2). (Here,�k +
�k′ + �k′′ = 0, P0,0′,0′′ is the permutation and sum over
(s, �k), (s′, �k′)(s′′, �k′′) andδ andP are the Dirac delta
function and Cauchy principal value, respectively.)
Structure functions are calculated by taking the inverse
Fourier transform of these surviving terms. ForN = 2,

S2(�r)= 2
(〈
v(x)

〉2 − 〈
v(x)v(x + r)〉)

= 2
∫
ωknk

(
1− cos

(�k · �r)d �k).
For 0< β − α < 2, S2(�r) ∼ P 1/2rβ−α . The lower
limit corresponds to finite capacity. The upper limit
means that the contribution of the universal part of
the spectrum dominates that of the nonuniversal part
which is proportional tor2 � rβ−α for small r.
Similarly we find S3(�r) ∼ Prβ−α/2. Likewise, the
surviving part of the fourth order cumulant gives rise
to the integrand inT4, and in general, the surviving
part of theN th order cumulantQ(N) will give rise
to the integrand inT2N−4. The ratio of SN(�r) to

(S2(�r))N/2 is proportional to a finite series

1+
N/2−1∑
s=1

CNsρ
s

for evenN and

ρ1/2

[
1+

(N−3)/2∑
s=1

CNsρ
s

]

for oddN whereρ = P 1/2r2α−β . One can prove that
for 0< β − α < 2, 0< α � 2, the smallr behavior
of SN for all N is dominated by the contributions
from the KZ spectrum and not from the nonuniversal
part. In calculatingSN , we use the fact that the first
surviving part of theN th order cumulantQ(N)(�k)
begins with a term proportional to the product of
frequency to theN/2 power, the coefficientLss1s2�k�k1�k2 to

the (N − 2)th power, the particle densitynk to the
(N − 1)th power divided by the(N − 2)th power of
sums and differences of frequencies. It should be noted
that, just as in the expansion for the kinetic equation,
the ratio of successive surviving terms in the cumulant
expansion also give powers ofP 1/2r2α−β .

Similar results hold for the energy flux spectrum for
the four wave interactions when 0< 2γ /3− α < 2,
0< α � 2. For breakdown at smallk (large r), the
relevant quantities are the ratios of the cumulants cor-
responding to the moment〈vN−1(�x)v(�x + �r)〉. The
manifestation of breakdown in this case is diver-
gence asr → ∞ and usually corresponds to the for-
mation of condensates. In this context, it should be
mentioned that for four wave interactions and small
negativeγ − 3α, Gurarie [7] has used a renormal-
ization technique to suggest a corrected spectrum in
kf < k < kNL.

One advantage of nonuniformly valid wave turbu-
lence systems is that the nonlinear coherent struc-
tures, which are initiated at breakdown, can often be
identified. For optical waves in nonlinear media de-
scribed by nonlinear Schrödinger-like field equations
[6,8] (a picture also relevant for Bose–Einstein con-
densation and the carrier distribution in semiconduc-
tor lasers), the inverse cascade of wave action to low
k leads to the formation of condensates and to either
a new class of fluctuations if the medium is defocus-
ing or to collapsing filaments if it is focusing. In the
latter case, the filaments are extremely coherent but
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are formed randomly in space-time. The parameters
of their statistical distribution (uniform in space, Pois-
son in time) are determined by the wave action flux
rateQ. The signal for the particle dissipation rate is
highly intermittent with spikes (large fluctuations) di-
rectly identifiable with collapse events [8].

For deep water gravity waves (α = 1/2, β = 7/4,
γ = 2β − α = 3), the condition for the breakdown
of the KZ spectrumE(k) ∼ P 1/3k−7/2g1/2 is that
P 2/3k/g becomes of order one fork < k0, k0 =√
ρwg/S, the scale at which surface tension(S) is im-

portant. HereP 2/3 = (ρa/ρw)V 2, whereρa,ρw are
the densities of air and water respectively andV is
wind speed. The criterion for breakdown turns out
to be exactly the same [9] as that of the KZ spec-
trum intersecting the Phillips spectrumE(k) ∼ k−4

beforek0. The Phillips spectrum coincides with that of
an ocean surface dominated by derivative discontinu-
ities (sharp crests). WhenV > 6 m/s,P 2/3k0/g > 1,
suggesting that the breakdown of the KZ spectrum
leads to singular solutions associated with crest for-
mation.

Finally, we mention that the numerical evidence
presented in [10] for the non-appearance of the KZ
spectrum seems to be connected with a dominance
of nonlocal interactions and therefore nonuniversal
behavior.
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