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INTRODUCTION

it follows from single-fluid MHD with an oblique
wnetic) viscosity that as the toroidal wave num-
r is increased unstable ideal ballooning modes
.ome stable drift-ballooning modes, because of a
bilizing effect of the finite ion Larmor radius
of. 1, for example). From the standpoint of
iotic theory, the meaning is that only the hydro-
gnetic stability of the drift-ballooning modes is
‘olved here. In this connection it is important
determine whether a kinetic growth of these
tes is possible by virtue of their resonant or
llisional interaction with plasma particles. That
vstion is the subject of the present paper.

Since the drift-ballooning modes are associated
th Alfvén wave branches, the instabilities with
ich we are concerned here may be thought of as
rtain versions of the class of kinetic Alfven in-
bilities of a tokamak plasma. The study of the
tabilities of this class was begun in Ref. 2,
ere an analysis was made of the resonant inter-
tion of local Alfvén waves modified by effects of
. magnetic-field curvature, with untrapped ions.
« analysis of Ref. 2 dealt with the case of per-
rbations with e!/2vpij/qR <w< vyi/qR, where w
the wave frequency, e¢ = a/R is the inverse as-
«t ratio, a and R are respectively the minor and
por radii of the torus, vpj = v2Tj/Mj is the ion
‘rmal velocity, Tj, and Mj are respectively the
perature and mass of an ion, and q is the safety
tor. The condition w > £'/2vTi/qR allows us to
ore the weakening of the resonant interaction
ich results from the trapping of particles in re-
ins of weak magnetic field (on the outer side of
torus). In Ref. 3, in contrast with Ref. 2, a
tdy was made of the resonant interaction of

ite ion Larmor radius, with untrapped ions, in

* opposite limit, w < el/2ypi/qR, in which this
pping of particles is extremely important. Also
interest for the problem at hand is the collisional
pr‘_agtion of waves with untrapped ions under the
Wition w < vij/ e, where vj is the rate of jon col-
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Kinetic mechanisms for the growth of drift-ballooning modes are studied theoretically. It is found that these
modes may be unstable as a result of their resonant and collisional interactions with ions. The instability
growth rates depend on the relation between the temperature gradient and the density gradient.

Isions. According to Ref. 2, this process ca
described in terms of a longitudinal ion visco
calculated in the banana regime. The role pl
by the process in the ideal m = 1 Kink modes
the index of the azimuthal harmonic) was stu
in Ref. 2. Waves with w > vj/ € were also st
there.

In Sec. 2 we present the basic equation
derive a general dispersion relation for drift-
looning modes, incorporating the effects liste
This relation is analyzed in Sec. 3. Conclus:
are drawn in Sec. 4.

2. INITIAL EQUATIONS

We start from the equation for ideal ball
modes, with drift effects and effects of the i
tion with ions (cf. Ref. 4, for example):

2(05) g

3 .
“’,(1—“‘;‘)+a=0.
®Wa w
Here wp = Scp/qR is the Alfvén frequency,
q'a/q is the shear, U,=4e’,X(1—1/¢>+3e’p5/2)/§
magnetic well, 8y is the ratio of the pressun
the pressure of ghe poloidal magnetic field, «
the ion drift frequency in terms of the press
gradient, t = Sy, and y is the standard ball
variable. The function £ is a Fourier compo
of the radial displacement of the plasma. Th
ity o incorporates effects of the resonant an
lisional interactions of ions with waves and is
fined by

2t
- _(85,sin 8)®
a Rar (8pxs8in 6)'7,

where p, is the plasma density, 8Pk is a Fol
component of the oscillatory part of the pert

pressure, and (...) = j(...)d9/2n.

We write the perturbed pressure in the
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6iz’=%{—‘jv’fdv, (3)

where £ = f exp(im o) is the perturbed part of the
distribution function, and 6 is the poloidal angle.
To find the function f we use the drift kinetic
equation (Ref. 2, for example)

v, 8} M,

%4 u=(1—9l)”‘:—ﬂpsinef'=suf).
(1]

—iof o gR 38 32T

Here v | is the Veloc1ty of the particles along the
magnetic field, o'=w. (1+y(Me*2T-"/3)] , wpi* is
the drift frequency in terms of the pressure gradi-
ent, n= 3 In T/3 In n,, F is the equilibrium Maxwel-
lian distribution function (normalized to the particle
density n,, as usual), St is the collision term, and
the prime denotes a derivative with respect to the
minor radius.

Introducing a function h, by analogy with Ref.
2,

=—th(1—%);”%§’, (5)

and using (4) and (5), we find an equation for h:

vy 8k

—iwh +—L
R TIR 50

M,
—‘l(ﬂ—éTU’SIDO—St(h). (6)

Transforming to the ballooning representation, and
using (2), (3), and (5), we then find

2 m'
o=f i % (M

where (cf. Ref. 2)

' 10
m(!v’l’hdvsme) . (8)

We see that the effects of the collisional and resonant
interaction of ions with drift-ballooning modes lead

to a renormalization of the inertial term in Eq. (1)
(cf. Refs. 2 and 5). Making use of this circum-
stance, and also using the procedure of joining the
asymptotic solutions of Eq. (1) with those of Eq.

(1) in the "inertialess" region, * we find the disper-
sion relation [cf. Eq. (26) of Ref. 6]

0*(1~0p'fot+A)=—1", (9)
where vy, is the growth rate of the drift-ballooning
modes, given explicitly in Ref. 4.

The problem has now been reduced to one of
calculating the quantity X in the various regimes
from (6) and (8) and solving the dispersion relation

(9).

3. SOLUTION OF THE DISPERSION

3.1. Resonant interaction. In accordance with
the Introduction, we consider two cases of the res-
onant interaction of wave with untrapped ions.

The first case deals with the region of perturbation
frequencies? &"vr/¢R<w<vr/qR; the second deals with
perturbations with frequencies® w < ¢/ 2vri/qR:

3.1.1.
Uri/qR .

The case of frequencies g%y /gR<g@<
We solve kinetic Equation (6) as in Ref. 2.
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Incorporating drift effects, we find an e
for A:

A= tﬁ'q”—"[i—“’“ (1+:—q)]

Let us consider the very simple case ¥y,
This condition means that the MHD insta
pressed by the effects of the finite ion |
us. From (9) and (10) we then find

mam,.(i-c—:—q)ﬂv oni 1+—n)n

An instability occurs if

n>0and N<-%/,
The ratio of the imaginary and real part
frequency is -~wpi*R/avTi.

3.1.2. The case of frequencies g<
In this case, making use of results from
find the following expression for A:

A=L,,
872
where
e T (o) [y 2

By analogy with Ref. 3, we find two wa
in the case y,< wpj*:

R | 5¥n ( Wy )l
O =Wy —i @p
149 36V2(1+8Y28/3q’) 0N
@y=,"+i Sn—2 — 'Vn_ (_m_,) @
1+n 36Y2(1+87Y2e/33*) ' ws
where

-_
m,,;(1+3q’/872_e,).

The first branch is unstable if
—1<n<0,

and the second if
1>s and n<—{.

The ratio of the growth rate to the real
the frequency is ~(w,/w,)>.

Expression (15) for the frequency
to that given in Ref. 3 but refers to no
Mercier perturbations but also ballooning
turbations. In the case in which vy, is -
rate of Mercier perturbations, expressiol
duces to that derived in Ref. 3. The b
mode growth rate, can also be substitut
as yg .

3.2. Collisional interaction. Agair
regime we will discuss two cases: that o
collisions and that of frequent collisions.
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r. 2, the transition between these two cases is
Ref. /¢. The methods for solving the kinetic
w ,;land for calculating A are described in
;,:itlu;n Ref. 2 (see also Ref. 7). We will reproduce

ly the results here.
The quantity A is given by

.\‘_i%i;i‘_;fFE"'(i—i—.)dEj%j a0 {{(1-4B)*+7)

—io[ (1—-AB)*+Y1}. (19)

e = uw/E, w =V ?2B, v is the modulus of

. transverse velocity_ of.the particles, and B is

o equilibrium magnetic fle!d. The integration over
1s from 0 to 1/B; the region 0 < X < 1/Bpay cor-
sponds to untrapped particles, and_the region
Bmax < * < 1/Bpin to trapped particles. The in-
gration over 6 is from 0 to 2w in the case of un-
pped particles and between the turning points in
o case of the trapped particles. The function Y =
( \, E) is nonzero only for the untrapped particles.
satisfies the relation

ia

90 (St(1-AB)"+¥]+iol (1-AB)*+Y])=0.
1-1B)*

(20)
‘he collision operator is?®
. [ T\ (4B 4 ,» 0f
bt(f)=2v-(M‘E) -_B—O_A[M1_w) a—x]’ (21)
yhere
9. =3Vnv.H(2)/2% z=(M.E/T)",
1y\2 ¢
H(z)=——exp(—2)+ {1~ )2 | exp(—)at. (22)
VYn:z ( 2z* )Yn! P )
3.2.1. The case of infrequent collisions, w > vi/

L. Ignoring the collision term in Eq. (20), we find the
ollowing expression for the function Y:

Y=Yo=—:- .
Y2 K(1/%)

(23)

phere x=(2e)*(1/AB—1—e)* In this case A becomes

A=t(1—w,/w), (24)
Where
'=32;eq'={1+‘g'j”d"[E(%)"4IT?;/77]} (25)

ere K(1/«) and E(1/«) are complete elliptic in-
?grals of the first and second kinds, respectively.
0w assuming that v; is small but nonzero, we can
nhcorporate collisions in Eq. (20). For this purpose
Ye use the method of Ref. 8. We write the function
' 151 the form Y = Y, (1 + y); from Eq. (22) we then
in

d;y_'_iecoo(lzl)‘ln( 16

dtz 2V|‘ T ) m) y=0.

(26)

lere w, is the real part of the frequency, and the
rameter x is related to A by A = [1 + e(2x — 1)}/
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B. We seek the function y by making use of
boundary conditions y = —1 at x = 0 and y -
X »+ —«. From Eq. (26) we then find, in th
quasiclassical approximation,

y=— exp[j.o(z’)dz’] ,

where
o= ()", (0

Using expressions (19), (23), (27) and (28),
find

A=Ao +Alv

where

Here

Y3n'gl,
2"se™ In" (128e@o/v:)

n

and the numbers I,, and I, are defined by
1= I H*(z)zbexp(—2*)dz!, I, =§ H*(z)z"rexp(—2
[] .

An evaluation of these integrals yields I, = 1
and I, = 0.74.

Assuming vy, « mpi‘, we find from (9),
(30), and (31)

{ v \*pn
contign{ ) B
0=, 19T LTI & ok 1 Ont

We see that an instability occurs in the case
The ratio of the growth rate of the frequency

~(Vl/5(l)p(')lb.
Along with (33), the dispersion relation
solution with w < wpi*. In this case we have

p 1-0,97q
=gt w B 7 D9
W=Dy i(V‘(I)o/E) T+ 1+T] )
where
Qo=Yo@p (1+1).

An instability occurs if =1 < n < 1.03. The
of the growth rate to the frequency is ~ (v/e

3.2.2. The case of frequent collisions,
Ignoring the term with w in Eq. (20), we fin

_i_aY n 1
B axn 2 xE(1/x)e*’

From (19) and (36) we then find
Vi

A=i%;—-m—{ [VZ—1a(14V3)]— “’;" [(1 —%—n)
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—ln(1+72)] +-Y3§-n]} { 1—21}' du[E“’/K) _%K(xi)]}'(”)

From (9) and (37) we find the wave branch

%, . 1
0 {10 (1=k) .
i

o=ao. [1+q(1-k)]-i2 (38)

g'v
We see that this branch is unstable

Here k = 1.03.
if n < 0.

4. DISCUSSION OF RESUL’I‘S '

This analysis indicates the possibility of non-
hydromagnetic instabilities of drift-ballooning modes
as a result of resonant and collisional interactions
of waves with ions. Correspondingly, these insta-
bilities could be called "resonant" and "collisional."
The resonant instabilities are characterized by (11),
(15), and (18); the collisional instabilities by (33),
(34), and (38). Both depend strongly on the param-
eter n=231In T/3 In n, [see, e.g., conditions (12),
(17) and (18)}.

These instabilities may be of interest for the
theory of plasma turbulence in tokamaks, in parti-
cular, because they may — by virtue of the non-
linearity of the plasma equations — influence the
longer-wavelength (hydromagnetically stable) per-
turbations. Furthermore, hydromagnetic stability
can be achieved not only by virtue of the finite-
Larmor-radius effects but also by imposing an ex-

ternal agent on the plasma, e.g., by in
particles into the tokamak.? Under thes
the instabilities which we have been dist
may be the most important instabilities.
these arguments will of course require a
tailed theory, but that would go beyond
of the present paper.
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