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Abstract 
 In this paper we review recent developments in 
the statistical theory of weakly nonlinear dispersive 
waves, the subject known as Wave Turbulence (WT). 
We revise WT theory using a generalisation of the 
random phase approximation (RPA). This 
generalisation takes into account that not only the 
phases but also the amplitudes of the wave Fourier
modes are random quantities and it is called the 
“Random Phase and Amplitude” approach. This 
approach allows to systematically derive the kinetic 
equation for the energy spectrum from the the Peierls-
Brout-Prigogine (PBP) equation  for the multi-mode 
probability density function (PDF). The PBP equation 
was originally derived for the three-wave systems and 
in the present paper we derive a similar equation for 
the four-wave case. Equation for the multi-mode PDF 
will be     used  to validate  the statistical assumptions
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about the phase and the amplitude randomness used for WT closures. Further, the multi-
mode PDF contains a detailed statistical information, beyond spectra, and it finally 
allows to study non-Gaussianity and intermittency in WT, as it will be described in the 
present paper. In particular, we will show that intermittency of stochastic nonlinear 
waves is related to a flux of probability in the space of wave amplitudes. 
 
1. Introduction 
 Imagine surface waves on sea produced by wind of moderate strength, so that the 
surface is smooth and there is no whitecaps. Typically, these waves exhibit great deal of 
randomness and the theory which aims to describe their statistical properties is called 
Wave Turbulence (WT). More broadly, WT deals the fields of dispersive waves which 
are engaged in stochastic weakly nonlinear interactions over a wide range of scales in 
various physical media. Plentiful examples of WT are found in oceans, atmospheres, 
plasmas and Bose-Einstein condensates [1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 30]. WT theory has 
a long and exciting history which started in 1929 from the pioneering paper of Peierls 
who derived a kinetic equation for phonons in solids [19]. In the 1960's these ideas have 
been vigorously developed in oceanography [6, 5, 2, 4, 30] and in plasma physics [3, 11, 9]. 
First of all, both the ocean and the plasmas can support great many types of dispersive 
propagating waves, and these waves play key role in turbulent transport phenomena, 
particularly the wind-wave friction in oceans and the anomalous diffusion and thermo-
conductivity in tokamaks. Thus, WT kinetic equations where developed and analysed for 
different types of such waves. A great development in the general WT theory was done 
by in the papers of Zakharov and Filonenko [5]. Before this work it was generally 
understood that the nonlinear dispersive wavefields are statistical, but it was also thought 
that such a “gas” of stochastic waves is close to thermodynamic equilibrium. Zakharov 
and Filonenko [5] were the first to argue that the stochastic wavefields are more like 
Kolmogorov turbulence which is determined by the rate at which energy cascades 
through scales rather than by a thermodynamic “temperature” describing the energy 
equipartition in the scale space. This picture was substantiated by a remarkable 
discovery of an exact solution to the wave-kinetic equation which describes such 
Kolmogorov energy cascade. These solutions are now commonly known as 
Kolmogorov-Zakharov (KZ) spectra and they form the nucleus of the WT theory. 
 Discovery of the KZ spectra was so powerful that it dominated the WT theory for 
decades thereafter. Such spectra were found for a large variety of physical situations, 
from quantum to astrophysical applications, and a great effort was put in their numerical 
and experimental verification. For a long time, studies of spectra dominated WT 
literature. A detailed account of these works was given in [1] which is the only book so 
far written on this subject. Work on these lines has continued till now and KZ spectra 
were found in new applications, particularly in astrophysics [16], ocean interior [18] and 
even cosmology [27]. However, the spectra do not tell the whole story about the 
turbulence statistics. In particular, they do not tell us if the wavefield statistics is 
Gaussian or not and, if not, in what way. This question is of general importance in the 
field of Turbulence because it is related with the intermittency phenomenon, - an 
anomalously high probability of large fluctuations. Such “bursts” of turbulent wavefields 
were predicted based on a scaling analysis in [32] and they were linked to formation of 
coherent structures, such as whitecaps on sea [28] or collapses in optical turbulence [7]. 
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To study these problems qualitatively, the kinetic equation description is not sufficient 
and one has to deal directly with the probability density functions (PDF). 
 In fact, such a description in terms of the PDF appeared already in the the Peierls 
1929 paper simultaneously with the kinetic equation for waves [19]. This result was 
largely forgotten by the WT community because fine statistical details and intermittency 
had not interested turbulence researchers until relatively recently and also because, 
perhaps, this result got in the shade of the KZ spectrum discovery. However, this line of 
investigation was continued by Brout and Prigogine [20] who derived an evolution 
equation for the multi-mode PDF commonly known as the Brout-Prigogine equation. 
This approach was applied to the study of randomness underlying the WT closures by 
Zaslavski and Sagdeev [21]. All of these authors, Peierls, Brout and Prigogine and 
Zaslavski and Sagdeev restricted their consideration to the nonlinear interaction arising 
from the potential energy only (i.e. the interaction Hamiltonian involves coordinates but 
not momenta). This restriction leaves out the capillary water waves, Alfven, internal and 
Rossby waves, as well as many other interesting WT systems. Recently, this restriction 
was removed by considering the most general three-wave Hamiltonian systems [24]. It 
was shown that the multi-mode PDF still obeys the Peierls-Brout-Prigogine (PBP) 
equation in this general case. This work will be described in the present review. We will 
also present, for the first time, a derivation of the evolution equation for the multi-mode 
PDF for the general case of four wave-systems. This equation is applicable, for example, 
to WT of the deep water surface gravity waves and waves in Bose-Einstein condensates 
or optical media described by the nonlinear Schroedinger (NLS) equation. 
 We will also describe the analysis of papers [24] of the randomness assumptions 
underlying the statistical WT closures. Previous analyses in this field examined validity 
of the random phase assumption [20, 21] without devoting much attention to the 
amplitude statistics. Such “asymmetry” arised from a common mis-conception that the 
phases evolve much faster than amplitudes in the system of nonlinear dispersive waves 
and, therefore, the averaging may be made over the phases only “forgetting” that the 
amplitudes are statistical quantities too (see e.g. [1]). This statement become less 
obvious if one takes into account that we are talking not about the linear phases ωt but 
about the phases of the Fourier modes in the interaction representation. Thus, it has to be 
the nonlinear frequency correction that helps randomising the phases [21]. On the other 
hand, for three-wave systems the period associated with the nonlinear frequency 
correction is of the same 2 order in small nonlinearity  as the nonlinear evolution time 
and, therefore, phase randomisation cannot occur faster that the nonlinear evolution of 
the amplitudes. One could hope that the situation is better for 4-wave systems because 
the nonlinear frequency correction is still ~ 2 but the nonlinear evolution appears only in 
the 4 order. However, in order to make the asymptotic analysis consistent, such 2 
correction has to be removed from the interaction-representation amplitudes and the 
remaining phase and amplitude evolutions are, again, at the same time scale (now 1/  4). 
This picture is confirmed by the numerical simulations of the 4-wave systems [26, 23] 
which indicate that the nonlinear phase evolves at the same timescale as the amplitude. 
Thus, to proceed theoretically one has to start with phases which are already random (or 
almost random) and hope that this randomness is preserved over the nonlinear evolution 
time. In most of the previous literature prior to [24] such preservation was assumed but 



Yeontaek Choi et al.  4

not proven. Below, we will describe the analysis of the extent to which such an 
assumption is valid made in [24].  
 We will also describe the results of [22] who derived the time evolution equation for 
higher-order moments of the Fourier amplitude, and its application to description of 
statistical wavefields with long correlations and associated “noisiness” of the energy 
spectra characteristic to typical laboratory and numerical experiments. We will also 
describe the results of [23] about the time evolution of the one-mode PDF and their 
consequences for the intermittency of stochastic nonlinear wavefields. In particular, we 
will discuss the relation between intermittency and the probability fluxes in the 
amplitude space.  
 
2. Setting the stage I: Dynamical equations of motion  
 Wave turbulence formulation deals with a many-wave system with dispersion and 
weak nonlinearity. For systematic derivations one needs to start from Hamiltonian 
equation of motion. Here we consider a system of weakly interacting waves in a periodic 
box [1],  
 

                                
(1) 

 
where cl is often called the field variable. It represents the amplitude of the interacting 
plane wave. The Hamiltonian is represented as an expansion in powers of small 
amplitude, 
 

                 (2) 
 

where Hj is a term proportional to product of j amplitudes cl, 
 

 
 
where q1, q2, q3, . . . qm and p1, p2, . . . pm are wavevectors on a d-dimensional Fourier 
space lattice. Such general j-wave Hamiltonian describe the wave-wave interactions 
where n waves collide to create m waves. Here  represents the amplitude of the 
n → m process. In this paper we are going to consider expansions of Hamiltonians up to 
forth order in wave amplitude. 
 Under rather general conditions the quadratic part of a Hamiltonian, which 
correspond to a linear equation of motion, can be diagonalised to the form 
 

.
                               

(3) 

 
This form of Hamiltonian correspond to noninteracting (linear) waves. First correction to 
the quadratic Hamiltonian is a cubic Hamiltonian, which describes the processes of 
decaying of single wave into two waves or confluence of two waves into a single one. 
Such a Hamiltonian has the form 
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(4) 

 
where  is a formal parameter corresponding to small nonlinearity (  is proportional to 
the small amplitude whereas cn is normalised so that cn ~ 1.) Most general form of three-
wave Hamiltonian would also have terms describing the confluence of three waves or 
spontaneous appearance of three waves out of vacuum. Such a terms would have a form 
 

 
 

 It can be shown however that for systems that are dominated by three-wave 
resonances such terms do not contribute to long term dynamics of systems. We therefore 
choose to omit those terms. 
 The most general four-wave Hamiltonian will have 1 → 3, 3 → 1, 2 → 2, 4 → 0 and 
0 → 4 terms. Nevertheless 1 → 3, 3 → 1, 4 → 0 and 0 → 4 terms can be excluded from 
Hamiltonian by appropriate canonical transformations, so that we limit our consideration 
to only 2 → 2 terms of  namely 
 

                          
(5)

 
 

It turns out that generically most of the weakly nonlinear systems can be separated into 
two major classes: the ones dominated by three-wave interactions, so that  describes 
all the relevant dynamics and  can be neglected, and the systems where the three-
wave resonance conditions cannot be satisfied, so that the  can be eliminated from a 
Hamiltonian by an appropriate near-identical canonical transformation [25]. 
Consequently, for the purpose of this paper we are going to neglect either  or , and 
study the case of resonant three-wave or four-wave interactions. 
 Examples of three-wave system include the water surface capillary waves, internal 
waves in the ocean and Rossby waves. The most common examples of the four-wave 
systems are the surface gravity waves and waves in the NLS model of nonlinear optical 
systems and Bose-Einstein condensates. For reference we will give expressions for the 
frequencies and the interaction coefficients corresponding to these examples. 
 For the capillary waves we have [1, 5], 
 

                   (6) 
 

and 
 

      
(7) 

 
where 
 

              (8) 
 

and σ  is the surface tension coefficient. 
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 For the Rossby waves [13, 14], 
 

                           
(9) 

 
and  
 

                   
(10) 

 

where β is the gradient of the Coriolis parameter and ρ is the Rossby deformation radius. 
 The simplest expressions correspond to the NLS waves [15, 7], 
 

                             (11) 
  
The surface gravity waves are on the other extreme. The frequency is  but the 
matrix element is given by notoriously long expressions which can be found in [1, 17]. 
 
2.1 Three-wave case 
 When  we have Hamiltonian in a form 
 

 
 
Equation of motion  is mostly conveniently represented in the interaction 
representation, 
 

     

(12) 

 
where  is the complex wave amplitude in the interaction representation, 

 are the indices numbering the wavevectors, e.g.  is the box 
side length,  and   is the wave linear dispersion relation. 
Here,  is an interaction coefficient and  is introduced as a formal small 
nonlinearity parameter. 
 
2.2 Four-wave case 
 Consider a weakly nonlinear wavefield dominated by the 4-wave interactions, e.g. 
the water-surface gravity waves [1, 6, 29, 28], Langmuir waves in plasmas [1, 3] and the 
waves described by the nonlinear Schroedinger equation [7]. The a Hamiltonian is given 
by (in the appropriately chosen variables) as 
 

               
(13) 
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As in three-wave case the most convenient form of equation of motion is obtained in 
interaction representation, cl =  so that 
 

                  
(14) 

 
where  is an interaction coefficient,  We are going 
expand in  and consider the long-time behaviour of a wave field, but it will turn out that 
to do the perturbative expansion in a self-consistent manner we have to renormalise the 
frequency of (14) as 
 

               
(15) 

 
where   and 
 

              
(16)

 
 
is the nonlinear frequency shift arising from self-interactions. 
 
3. Setting the stage II: Statistical setup 
 In this section we are going to introduce statistical objects that shall be used for the 
description of the wave systems, PDF’s and a generating functional. 
 
3.1 Probability distribution function 
 Let us consider a wavefield a(x, t) in a periodic cube of with side L and let the 
Fourier transform of this field be al(t) where index  marks the mode with 
wavenumber  on the grid in the d-dimensional Fourier space. For simplicity 
let us assume that there is a maximum wavenumber kmax (fixed e.g. by dissipation) so 
that no modes with wavenumbers greater than this maximum value can be excited. In 
this case, the total number of modes is  Correspondingly, index l will 
only take values in a finite box,  which is centred at 0 and all sides of which 
are equal to  To consider homogeneous turbulence, the large box limit 
N → ∞ will have to be taken.1 
 Let us write the complex al  as  where Al  is a real positive amplitude and  
is a phase factor which takes values on  a unit circle centred at zero in the complex 
plane. Let us define the N-mode joint PDF  as the probability for the wave 

                                                 
1It is easily to extend the analysis to the infinite Fourier space, kmax = ∞. In this case, the full joint 
PDF would still have to be defined as a N → ∞ limit of an N-mode PDF, but this limit would 
have to be taken in such a way that both kmax and the density of the Fourier modes tend to infinity 
simultaneously. 
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intensities  to be in the range  and for the phase factors  to be on the 

unit-circle segment between ξl and ξl + dξl for all  In terms of this PDF, taking the 
averages will involve integration over all the real positive 's and along all the complex 
unit circles of all ξl ’s, 
 

          
(17) 

 

where notation  means that f depends on all  and all ’s in the set 
 (similarly,  means etc). The full PDF that contains the 

complete statistical information about the wavefield a(x, t) in the infinite x-space can be 
understood as a large-box limit  
 

 
 

i.e. it is a functional acting on the continuous functions of the wavenumber, sk and ξk. In  
the large box limit there is a path-integral version of (17), 
 

          
(18)

 
 
The full PDF defined above involves all N modes (for either finite N or in the N → ∞ 
limit). By integrating out all the arguments except for chosen few, one can have reduced 
statistical distributions. For example, by integrating over all the angles and over all but 
M amplitudes,we have an “M-mode” amplitude PDF, 
 

        
(19) 

 

which depends only on the M amplitudes marked by labels j1, j2, . . . ,  
 
3.2 Definition of an ideal RPA field 
 Following the approach of [22, 23], we now define a “Random Phase and 
Amplitude” (RPA) field.2 We say that the field a is of RPA type if it possesses the 
following statistical properties: 
 

1. All amplitudes Al  and their phase factors  are independent random variables, 
i.e. their joint PDF is equal to the product of the one-mode PDF’s 
corresponding to each individual amplitude and phase, 

                                                 
2We keep the same acronym as in related “Random Phase Approximation” but now interpret it 
differently because (i) we emphasise the amplitude randomness and (ii) now RPA is a defined 
property of the field to be examined and not an approximation. 
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2. The phase factors  are uniformly distributed on the unit circle in the complex 
plane, i.e. for any mode l 

 
 

 
Note that RPA does not fix any shape of the amplitude PDF’s and, therefore, can deal 
with strongly non-Gaussian wavefields. Such study of non-Gaussianity and intermittency 
of WT was presented in [22, 23] and will not be repeated here. However, we will study 
some new objects describing statistics of the phase. 
 In [22, 23] RPA was assumed to hold over the nonlinear time. In [24] this 
assumption was examined a posteriori, i.e. based on the evolution equation for the multi-
point PDF obtained with RPA initial fields. Below we will describe this work. We will 
see that RPA fails to hold in its pure form as formulated above but it survives in the 
leading order so that the WT closure built using the RPA is valid. We will also see that 
independence of the the phase factors is quite straightforward, whereas the amplitude 
independence is subtle. Namely, M amplitudes are independent only up to a O(MN) 
correction. Based on this knowledge, and leaving justification for later on in this paper, 
we thus reformulate RPA in a weaker form which holds over the nonlinear time and 
which involves M-mode PDF’s with M  N rather than the full N-mode PDF. 
 
3.3 Definition of an essentially RPA field 
 We will say that the field a is of an “essentially RPA” type if: 
 

1. The phase factors are statistically independent and uniformly distributed 
variables up to  corrections, i.e. 

 

          
(20) 

 
where 
 

          
(21) 

 
is the N-mode amplitude PDF. 
 

2. The amplitude variables are almost independent is a sense that for each M  N 
modes the M-mode amplitude PDF is equal to the product of the one-mode 
PDF’s up to O(MN) and  corrections, 

 

                    (22)
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3.4 Why ψ’ and not φ’s? 
 Importantly, RPA formulation involves independent phase factors  and not 
phases φ themselves. Firstly, the phases would not be convenient because the mean 
value of the phases is evolving with the rate equal to the nonlinear frequency correction 
[24]. Thus one could not say that they are “distributed uniformly from   
Moreover the mean fluctuation of the phase distribution is also growing and they quickly 
spread beyond their initial 2π-wide interval [24]. But perhaps even more important, φ’s 
build mutual correlations on the nonlinear time whereas ’s remain independent. Let us 
give a simple example illustrating how this property is possible due to the fact that 
correspondence between φ and  is not a bijection. Let N be a random integer and let r1 
and r2 be two independent (of N and of each other) random numbers with uniform 
distribution between − π and π. Let 
 

 
 
Then 
 

 
 
and 
 

 
 
Thus, 
 

, 
 
which means that variables φ1 and φ2 are correlated. On the other hand, if we introduce 
 

 
 
then 
 

 
 
and 
 

 
 
which means that variables 1 and 2 are statistically independent. In this illustrative 
example it is clear that the difference in statistical properties between φ and  arises 
from the fact that function (φ) does not have inverse and, consequently, the 
information about N contained in φ is lost in . 
 Summarising, statistics of the phase factors  is simpler and more convenient to use 
than φ  because most of the statistical objects depend only on . This does not mean, 
however, that phases φ are not observable and not interesting. Phases φ  can be “tracked” 
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in numerical simulations continuously, i.e. without making jumps to −π when the phase 
value exceeds π. Such continuous in k function φ(k) can achieve a large range of 
variation in values due to the dependence of the nonlinear rotation frequency with k. 
This kind of function implies fastly fluctuating (k) which is the mechanism behind de-
correlation of the phase factors at different wavenumbers. 
 
3.5 Wavefields with long spatial correlations 
 Often in WT, studies are restricted to wavefields with fastly decaying spatial 
correlations [2]. For such fields, the statistics of the Fourier modes is close to being 
Gaussian. Indeed, it the correlation length is much smaller than the size of the box, then 
this box can be divided into many smaller boxes, each larger than the correlation length. 
The Fourier transform over the big box will be equal to the sum of the Fourier 
transforms over the smaller boxes which are statistically independent quantities. 
Therefore, by the Central Limit Theorem, the big-box Fourier transform has a Gaussian 
distribution. Corrections to Gaussianity are small as the ratio of the correlation volume to 
the box volume. On the other hand, in the RPA defined above the amplitude PDF is not 
specified and can significantly deviate from the Rayleigh distribution (corresponding to 
Gaussian wavefields). Such fields correspond to long correlations of order or greater 
than the box size. In fact, long correlated fields are quite typical for WT because, due to 
weak nonlinearity, wavepackets can propagate over long distance preserving their 
identity. Moreover, restricting ourselves to short-correlated fields would render our study 
of the PDF evolution meaningless because the later would be fixed at the Gaussian state. 
Note that long correlations modify the usual Wick's rule for the correlator splitting by 
adding a singular cumulant, e.g. for the forth-order correlator, 
 

 
 
where  These issues were discussed in detail in [22]. 
 
3.6 Generating functional 
 Introduction of generating functionals simplifies statistical derivations. It can be 
defined in several different ways to suit a particular technique. For our problem, the most 
useful form of the generating functional is 
 

                      
(23)

 
 
where  is a set of parameters,  and  
 

                     
(24) 

 
where  This expression can be verified by considering mean of a 
function  using the averaging rule (17) and expanding f  in the angular 
harmonics  (basis functions on the unit circle), 
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(25)

 
 

where  are indices enumerating the angular harmonics. Substituting 
this into (17) with PDF given by (24) and taking into account that any nonzero power of 
ξl will give zero after the integration over the unit circle, one can see that LHS=RHS, i.e. 
that (24) is correct. Now we can easily represent (24) in terms of the generating 
functional, 
 

             
(26) 

 
where  stands for inverse the Laplace transform with respect to all  parameters and  

 are the angular harmonics indices. 
 Note that we could  have defined Z for all real µl’s in which case obtaining P would 

involve finding the Mellin transform of Z with respect to all µl’s. We will see below 

however that, given the random-phased initial conditions, Z will remain zero for all non-

integer µl’s. More generally, the mean of any quantity which involves a non-integer 
power of a phase factor will also be zero. Expression (26) can be viewed as a result of 
the Mellin transform for such a special case. It can also be easily checked by considering 
the mean of a quantity which involves integer powers of l’s. 

 By definition, in RPA fields all variables Al and l are statistically independent and 

l’s are uniformly distributed on the unit circle. Such fields imply the following form of 
the generating functional 
 

           
(27) 

 

where 
 

                            
(28) 

 

is an N-mode generating function for the amplitude statistics. Here, the Kronecker 

symbol  ensures independence of the PDF from the phase factors l. As a first step 
in validating the RPA property we will have to prove that the generating functional 
remains of form (27) up to 1N and  corrections over the nonlinear time provided it 

has this form at t = 0. 
 
3.7 One-mode statistics 
 Of particular interest are one-mode densities which can be conveniently obtained 
using a one-amplitude generating function 
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where λ is a real parameter. Then PDF of the wave intensities  at each k can be 
written as a Laplace transform, 
 

          
(29) 

 
For the one-point moments of the amplitude we have 
 

,
           

(30) 

 

where and subscript λ means differentiation with respect to λ p times. 
 The first of these moments,  is the waveaction spectrum. Higher moments 

 measure fluctuations of the waveaction k-space distributions about their mean 
values [22]. In particular the r.m.s. value of these fluctuations is 
 

             (31) 
 
4. Separation of timescales: General idea 
 When the wave amplitudes are small, the nonlinearity is weak and the wave periods, 
determined by the linear dynamics, are much smaller than the characteristic time at 
which different wave modes exchange energy. In the other words, weak nonlinearity 
results in a timescale separation and our goal will be to describe the slowly changing 
wave statistics by averaging over the fast linear oscillations. To filter out fast 
oscillations, we will seek seek for the solution at time T such that  Here 

 is the characteristic time of nonlinear evolution which, as we will see later is  
for the three-wave systems and  for the four-wave systems. Solution at t = T can 
be sought at series in small nonlinearity parameter  
 

             (32) 
 
Then we are going to iterate the equation of motion (12) or (15) to obtain  and 

 by iterations. 
 During this analysis the certain integrals of a type 
 

 
 
will play a crucial role. Following [2] we introduce 
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,

,

                  

(33) 

 
and 
 

 
 
We will be interested in a long time asymptotics of the above expressions, so the 
following properties will be useful: 
 

 
 
and 
 

 
 

5. Weak nonlinearity expansion: Three-wave case 
 Substituting the expansion (32) in (12) we get in the zeroth order 
 

 
 
i.e. the zeroth order term is time independent. This corresponds to the fact that the 
interaction representation wave amplitudes are constant in the linear approximation. For 
simplicity, we will write  understanding that a quantity is taken at T = 0 if its 
time argument is not mentioned explicitly. 
 Here we have taken into account that  and  
 The first order is given by 
 

                     (34) 
 
Here we have taken into account that  and  Perform the second 
iteration, and integrate over time to obtain. To calculate the second iterate, write 
 

         
(35)

 
 
Substitute (34) into (35) and integrate over time to obtain 
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(36) 

 
where we used  Hereafter, we drop super-script (0) in expressions like (36) for 
brevity of notations. 
 
6. Weak nonlinearity expansion: Four-wave case 
 Substituting (32) in (15) we get in the zeroth order  and the first 
iteration of (15) gives 
 

            
(37) 

 
Iterating one more time we get 
 

               (38) 
 

7. Asymptotic expansion of the generating functional 
 Let us first obtain an asymptotic weak-nonlinearity expansion for the generating 
functional  exploiting the separation of the linear and nonlinear time scales.3 To 
do this, we have to calculate Z at the intermediate time t = T via substituting into it aj(T) 

from (32). For the amplitude and phase “ingredients” in Z we have, 
 

          (39) 
 

and 
 

          
(40) 

                                                 
3Hereafter we omit superscript (N) in the N-mode objects if it does not lead to a confusion. 
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where 
 

             (41) 
 

  
(42) 

 

             
(43) 

 

  
(44) 

 

Substituting expansions (39) and (40) into the expression for Z, we have 
 

          (45) 
 
with  
 

   
(46)

 
 
where 
 

                                                  
(47) 

 

          
(48) 

 

            
(49) 

 

                             
(50) 

 

               (51) 
 
where  and  denote the averaging over the initial amplitudes and initial phases 
(which can be done independently). Note that so far our calculation for Z(T) is the same 
for the three-wave and for the four-wave cases. Now we have to substitute expressions 
for  and  which are different for the three-wave and the four-wave cases and 
given by (34), (36) and (34), (36) respectively. 
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8. Evolution of statistics of three-wave systems 
8.1 Equation for the generating functional 
 Let us consider the initial fields  which are of the RPA type as defined above. 
We will perform averaging over the statistics of the initial fields in order to obtain an 
evolution equations, first for Z and then for the multi-mode PDF. Let us introduce a graphical 
classification of the above terms which will allow us to simplify the statistical averaging and 
to understand which terms are dominant. We will only consider here contributions from J1 

and J2 which will allow us to understand the basic method. Calculation of the rest of the 

terms, J3, J4 and J5, follows the same principles and can be found in [24]. First, The linear in 

 terms are represented by J1 which, upon using (34), becomes 
 

 
(52) 

 
Let us introduce some graphical notations for a simple classification of different 
contributions to this and to other (more lengthy) formulae that will follow. Combination 

 will be marked by a vertex joining three lines with in-coming j and out-coming 

m and n directions. Complex conjugate  will be drawn by the same vertex but  

with the opposite in-coming and out-coming directions. Presence of aj and  will be 
indicated by dashed lines pointing away and toward the vertex respectively.4 Thus, the 
two terms in formula (52) can be schematically represented as follows, 
 

 
  

 Let us average over all the independent phase factors in the set  Such averaging 
takes into account the statistical independence and uniform distribution of variables  
In particular,  Further, the products that 
involve odd number of  are always zero, and among the even products only those can 
survive that have equal numbers of  and . These  and  must cancel each 
other which is possible if their indices are matched in a pairwise way similarly to the 
Wick’s theorem. The difference with the standard Wick, however, is that there exists 
possibility of not only internal (with respect to the sum) matchings but also external ones 
with  in the pre-factor  

                                                 
4This technique provides a useful classification method but not a complete mathematical 
description of the terms involved. 
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 Obviously, non-zero contributions can only arise for terms in which all  cancel 
out either via internal mutual couplings within the sum or via their external couplings to 
the  in the l-product. The internal couplings will indicate by joining the dashed lines 
into loops whereas the external matching will be shown as a dashed line pinned by a 
blob at the end. The number of blobs in a particular graph will be called the valence of 
this graph.  
 Note that there will be no contribution from the internal couplings between the 
incoming and the out-coming lines of the same vertex because, due to the δ -symbol, one 

of the wavenumbers is 0 in this case, which means5 that V = 0. For J1 we have 
 

 
 
with 
 

 
 
and 
 

 
 
which correspond to the following expressions, 
 

 
(53) 

                                                 
5In the present paper we consider only spatially homogeneous wave turbulence fields. In spatially 
homogeneous fields, due to momentum conservation, there is no coupling to the zero mode k = 0 
because such coupling would violate momentum conservation. Therefore if one of the arguments 
of the interaction matrix element V is equal to zero, the matrix element is identically zero. That is 
to say that for any spatially homogeneous wave turbulence system  
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and 
 

 
(54) 

 
Because of the δ-symbols involving µ’s, it takes very special combinations of the 

arguments µ in Z{µ} for the terms in the above expressions to be non-zero. For example, 
a particular term in the first sum of (53) may be non-zero if two µ ’s in the set {µ} are 
equal to 1 whereas the rest of them are 0. But in this case there is only one other term in 
this sum (corresponding to the exchange of values of n and j) that may be non-zero too. 
In fact, only utmost two terms in the both (53) and (54) can be non-zero simultaneously. 
In the other words, each external pinning of the dashed line removes summation in one 
index and, since all the indices are pinned in the above diagrams, we are left with no 
summation at all in J1 i.e. the number of terms in J1 is O(1) with respect to large N. We 
will see later that the dominant contributions have O(N2) terms. Although these terms 
come in the  order, they will be much greater that the  terms because the limit N → ∞ 
must always be taken before  
 Let us consider the first of the -terms, J2. Substituting (34) into (48), we have 
 

 
                                                     (55) 
 

where 
 

  
                (56)

 
Here the graphical notation for the interaction coefficients V and the amplitude a is     
the same as introduced in the previous section and the dotted line with index j indicates     
that there is a summation over j but there is no amplitude aj in the corresponding 
expression. 
 Let us now perform the phase averaging which corresponds to the internal and 
external couplings of the dashed lines. For  we have 
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(57) 

 
where 
 

 
 

 We have not written out the third term in (57) because it is just a complex conjugate 
of the second one. Observe that all the diagrams in the first line of (57) are O(1) with respect 
to large N because all of the summations are lost due to the external couplings(compare 
with the previous section). On the other hand, the diagram in the second line contains 
two purely-internal couplings and is therefore O(N2). This is because the number of 
indices over which the summation survives is equal to the number of purely internal 
couplings. Thus, the zero-valent graphs are dominant and we can write 
 

                         
(58) 

 

 Now we are prepared to understand a general rule: the dominant contribution always 
comes from the graphs with minimal valence, because each external pinning reduces the 
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number of summations by one. The minimal valence of the graphs in  is one and, 
therefore,  is order N times smaller than  On the other hand,  is of the 
same order as  because it contains zero-valence graphs. We have 
 

     
(59) 

 
Summarising, we have 
 

  
(60) 

 
Thus, we considered in detail the different terms involved in J2 and we found that the 
dominant contributions come from the zero-valent graphs because they have more 
summation indices involved. This turns out to be the general rule in both three-wave and 
four-wave cases and it allows one to simplify calculation by discarding a significant 
number of graphs with non-zero valence. Calculation of terms J3 to J5 can be found in 
[24] and here we only present the result, 
 

               (61) 
 

J4 = O(1) (i.e. J4 is order N2 times smaller than J2 or J3) and 
 

 

               
(62) 

 

 Using our results for J1 − J5 in (46) and  (45) we have 
 

 
               (63) 
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Here partial derivatives with respect to  appeared because of the Al factors. This 
expression is valid up to  and  corrections. Note that we still have not       
used any assumption about the statistics of A’s. Let us now N → ∞ limit followed          
by  (we re-iterate that this order of the limits is essential). Taking into 
account that  and  and, replacing 

 by   we have 
 

 
(64) 

 
Here variational derivatives appeared instead of partial derivatives because of the N → ∞ 
limit. 
 Now we can observe that the evolution equation for Z does not involve µ which 

means that if initial Z contains factor  it will be preserved at all time. This, in 
turn, means that the phase factors  remain a set of statistically independent (of each 
other and of A’s) variables uniformly distributed on S1. This is true with accuracy  
assuming that the N-limit is taken first, i.e.  and this proves persistence of the 
first of the “essential RPA” properties. Similar result for a special class of three-wave 
systems arising in the solid state physics was previously obtained by Brout and 
Prigogine [20]. This result is interesting because it has been obtained without any 
assumptions on the statistics of the amplitudes {A} and, therefore, it is valid beyond the 
RPA approach. It may appear useful in future for study of fields with random phases but 
correlated amplitudes. 
 
8.2 Equation for the multi-mode PDF 
 Taking the inverse Laplace transform of (64) we have the following equation for the 
PDF, 
 

              
(65) 

 

where  is a flux of probability in the space of the amplitude sj, 
 

  
(66) 
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This equation is identical to the one originally obtained by Peierls [19] and later 
rediscovered by Brout and Prigogine [20] in the context of the physics of anharmonic 
crystals, 
 

     
(67) 

 
where 
 

            
(68)

 
 
Zaslavski and Sagdeev [21] were the first to study this equation in the WT context. 
However, the analysis of [19, 20, 21] was restricted to the interaction Hamiltonians of 
the “potential energy” type, i.e. the ones that involve only the coordinates but not the 
momenta. This restriction leaves aside a great many important WT systems, e.g. the 
capillary, Rossby, internal and MHD waves. Our result above indicates that the Peierls 
equation is also valid in the most general case of 3-wave systems. Note that Peierls form 
(67) - (68) looks somewhat more elegant and symmetric than (65) - (66). However, form 
(65) - (66) has advantage because it is in a continuity equation form. Particularly for 
steady state solutions, one can immediately integrate it once and obtain, 
 

         
(69) 

 

where A is an arbitrary functional of s(k) and  is the antisymmetric tensor, 
 

 
 
In the other words, probability flux F can be an arbitrary solenoidal field in the 
functional space of s(k). One can see that (69) is a first order equation with respect to the 
s-derivative. Special cases of the steady solutions are the zero-flux and the constant-flux 
solutions which, as we will see later correspond to a Gaussian and intermittent wave 
turbulence respectively. 
 Here we should again emphasise importance of the taken order of limits, N → ∞ 
first and  second. Physically this means that the frequency resonance is broad 
enough to cover great many modes. Some authors, e.g. [19, 20, 21], leave the sum 
notation in the PDF equation even after the  limit taken giving   One has to 
be careful interpreting such formulae because formally the RHS is nill in most of the 
cases because there may be no exact resonances between the discrete k modes (as it is 
the case, e.g. for the capillary waves). In real finite-size physical systems, this condition 
means that the wave amplitudes, although small, should not be too small so that the 
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frequency broadening is sufficient to allow the resonant interactions. Our functional 
integral notation is meant to indicate that the N → ∞ limit has already been taken. 
 
9. Evolution of statistics of four-wave systems 
 In this section we are going to calculate the four-wave analog of PBP equation. 
These calculations are similar in spirit to those presented in the previous section, but 
with the four-wave equation of motion (15). The calculation will be slightly more 
involved due to the frequency renormalisation, but it will be significantly simplified by 
our knowledge that (for the same reason as for three-wave case) all µ dependent terms 
will not contribute to the final result. Indeed, any term with nonzero µ would have less 
summations and therefore will be of lower order. On the diagrammatic language that 
would mean that all diagrams with non-zero valence can be discarded, as it was 
explained in the previous section. Below, we will only keep the leading order terms 
which are ~ N2 and which correspond to the zero-valence diagrams. Thus, to calculate Z 

we start with the J1 − J5 terms (47),(48),(49),(50),(51) in which we put µ = 0 and 

substitute into them the values of a(1) and a(2) from (37) and (38). For the terms 
proportional to  we have 
 

   

                     
(70)  

 

where we have used the fact that ∆(0) = T. We see that our choice of the frequency 
renormalisation (16) makes the contribution of  equal to zero, and this is the 
main reason for making this choice. Also, this choice of the frequency correction 
simplifies the  order and, most importantly, eliminates from them the T2 cumulative 
growth, e.g. 
 

 
 
Finally we get, 
 

 

                 
(71) 
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By putting everything together in (45) and (46) and exploiting the symmetries introduced 
by the summation variables, we finally obtain in N → ∞ limit followed by       T → ∞  
 

  
(72) 

 
By applying to this equation the inverse Laplace transform, we get a four-wave analog of 
the PBP equation for the N-mode PDF: 
 

     
(73) 

 
where 
 

              
(74) 

 
This equation can be easily written in the continuity equation form (65) with the flux 
given in this case by 
 

                                   
(75) 

 
10. Justification of RPA 
 Variables sj do not separate in the above equation for the PDF. Indeed, substituting 
 

              (76) 
 
into the discrete version of (66) we see that it turns into zero on the thermodynamic 
solution with  However, it is not zero for the one-mode PDF 

corresponding to the cascade-type Kolmogorov-Zakharov (KZ) spectrum  i.e. 
(see the Appendix), nor it is likely to be zero for any other 

PDF of form (76). This means that, even initially independent, the amplitudes will 
correlate with each other at the nonlinear time. Does this mean that the existing WT 
theory, and in particular the kinetic equation, is invalid? 
 To answer to this question let us differentiate the discrete version of the equation (64) 
with respect to λ’s to get equations for the amplitude moments. We can easily see that 
 

                                                    (77) 
 
if  (with the same accuracy) at t = 0. Similarly, in terms of 
PDF’s 
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(78) 

 

if  Here    

 and  are the four-mode, two-mode and 
one-mode PDF’s obtained from  by integrating out all but 3,2 or 1 arguments respectively. 
One can see that, with a  accuracy, the Fourier modes will remain independent of each 
other in any pair over the nonlinear time if they were independent in every triplet at t = 0. 
 Similarly, one can show that the modes will remain independent over the nonlinear 
time in any subset of M < N modes with accuracy MN (and ) if they were initially 

independent in every subset of size M + 1. Namely 
 

                
(79) 

 

if   at t = 0. 
 

Mismatch O(MN) arises from some terms in the ZS equation with coinciding indices j. 

For M = 2 there is only one such term in the N-sum and, therefore, the corresponding 

error is O(1N) which is much less than  (due to the order of the limits in N and ). 

However, the number of such terms grows as M and the error accumulates to O(MN) 

which can greatly exceed  for sufficiently large M. 
 We see that the accuracy with which the modes remain independent in a subset is 
worse for larger subsets and that the independence property is completely lost for subsets 
approaching in size the entire set, M ~ N. One should not worry too much about this loss 

because N is the biggest parameter in the problem (size of the box) and the modes will 

be independent in all M-subsets no matter how large. Thus, the statistical objects 
involving any finite number of modes are factorisable as products of the one-mode 
objects and, therefore, the WT theory reduces to considering the one-mode objects. This 
results explains why we re-defined RPA in its relaxed “essential RPA” form. Indeed, in 
this form RPA is sufficient for the WT closure and, on the other hand, it remains valid 
over the nonlinear time. In particular, only property (77) is needed, as far as the 
amplitude statistics is concerned, for deriving the 3-wave kinetic equation, and this fact 
validates this equation and all of its solutions, including the KZ spectrum which plays an 
important role in WT. 
 The situation were modes can be considered as independent when taken in relatively 
small sets but should be treated as dependent in the context of much larger sets is not so 
unusual in physics. Consider for example a distribution of electrons and ions in plasma. 
The full N-particle distribution function in this case satisfies the Liouville equation 

which is, in general, not a separable equation. In other words, the N-particle distribution 
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function cannot be written as a product of N one-particle distribution functions. 

However, an M-particle distribution can indeed be represented as a product of M one-

particle distributions if  where ND is the number of particles in the Debye 
sphere. We see an interesting transition from a an individual to collective behaviour 
when the number of particles approaches ND. In the special case of the one-particle 
function we have here the famous mean-field Vlasov equation which is valid up to 
O(1ND) corrections (representing particle collisions). 
 
11. One-mode statistics 
 We have established above that the one-point statistics is at the heart of the WT 
theory. All one-point statistical objects can be derived from the one-point amplitude 
generating function, 
 

 
 
which can be obtained from the N-point Z by taking all µ’s and all λ’s, except for λj, 
equal to zero. Substituting such values to (64) (for the three-wave case) or to (72) (four-
wave) we get the following equation for Za, 
 

           
(80) 

 
where for the three-wave case we have: 
 

          
(81) 

 

                         
(82) 

 
and in the four-wave case: 
 

                                
(83) 

 

                     
(84) 

 
Here we introduced the wave-action spectrum, 
 

                 (85) 
 

Differentiating (80) with respect to λ we get an equation for the moments : 
 

           (86)
 



Yeontaek Choi et al.  28

which, for p = 1 gives the standard kinetic equation, 
 

             (87) 
 
 First-order PDE (80) can be easily solved by the method of characteristics. Its steady 
state solution is 
 

             
(88)

 
 
which corresponds to the Gaussian values of momenta 
 

                (89) 
 
However, these solutions are invalid at small λ and high p’s because large amplitudes 

 for which nonlinearity is not weak, strongly contribute in these cases. Because 
of the integral nature of definitions of M(p) and Z with respect to the  the ranges 
of amplitudes where WT is applicable are mixed with, and contaminated by, the regions 
where WT fails. Thus, to clearly separate these regions it is better to work with 
quantities which are local in  in particular the one-mode probability distribution 
Pa. Equation for the one-mode PDF can be obtained by applying the inverse Laplace 
transform to (80). This gives: 
 

                
(90) 

 

with F is a probability flux in the s-space, 
 

                   
(91) 

 
Let us consider the steady state solutions,  so that 
 

               (92) 
 
Note that in the steady state  which follows from kinetic equation (87). The 
general solution to (92) is 
 

                         (93) 
 
where 
 

            (94) 
 
is the general solution to the homogeneous equation (corresponding to F = 0) and Ppart is 
a particular solution, 
 

           (95) 
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where Ei(x) is the integral exponential function. 

 At the tail of the PDF, , the solution can be represented as series in 1s, 
 

            
(96)

 
 
Thus, the leading order asymptotics of the finite-flux solution is 1s which decays much 
slower than the exponential (Rayleigh) part Phom and, therefore, describes strong 
intermittency. 
 Note that if the weakly nonlinearity assumption was valid uniformly to s = ∞ then 
we had to put F = 0 to ensure positivity of P and the convergence of its normalisation, 

 In this case P = Phom = n exp (−s/n) which is a pure Rayleigh distribution 
corresponding to the Gaussian wave field. However, WT approach fails for the 
amplitudes s ≥ snl  for which the nonlinear time is of the same order or less than the 
linear wave period and, therefore, we can expect a cut-off of P(s) at s = snl. Estimate for 
the value of snl can be obtained from the dynamical equation (14) by balancing the linear 
and nonlinear terms and assuming that if the wave amplitude at some k happened to be 
of the critical value snl then it will also be of similar value for a range of k’s of width k 
(i.e. the k-modes are strongly correlated when the amplitude is close to critical). This gives: 
 

                (97) 
 

This cutoff can be viewed as a wavebreaking process which does not allow wave 
amplitudes to exceed their critical value, P(s) = 0 for s > snl. Now the normalisation 
condition can be satisfied for the finite-flux solutions. Note that in order for our analysis 
to give the correct description of the PDF tail, the nonlinearity must remain weak for the 
tail, which means that the breakdown happens far from the PDF core  When snl ~ n 
one has a strong breakdown predicted in [32] which is hard to describe rigorously due to 
strong nonlinearity. 
 Depending on the position in the wavenumber space, the flux F can be either positive 
or negative. As we discussed above, F < 0 results in an enhanced probability of large wave 
amplitudes with respect to the Gaussian fields. Positive F mean depleted probability and 
correspond to the wavebreaking value snl  which is closer to the PDF core. When snl gets 
into the core, snl ~ n one reaches the wavenumbers at which the breakdown is strong, i.e. of 
the kind considered in [32]. Consider for example the water surface gravity waves. 
Analysis of [32] predicts strong breakdown in the high-k part of the energy cascade range. 
According to our picture, these high wavenumbers correspond to the highest positive 
values of F and, therefore, the most depleted PDF tails with respect to the Gaussian 
distribution. When one moves away from this region toward lower k’s, the value of F gets 
smaller and, eventually, changes the sign leading to enhanced PDF tails at low k’s. This 
picture is confirmed by the direct numerical simulations of the water surface equations 
reported in [23] the results of which are shown in figure 1. 
 This figure shows that at a high k the PDF tail is depleted with respect to the 
Rayleigh distribution, whereas at a lower k it is enhanced which corresponds to 
intermittency  at  this  scale.  Similar  conclusion   that  the gravity wave turbulence is  



Yeontaek Choi et al.  30

 
 

Figure 1. One-mode amplitude PDF’s at two wavenumbers: upper curve at k1 and the lower curve 
at and k2 such that k1 > k2. Dashed line corresponds to the Rayleigh distribution. 
 
intermittent at low rather than high wavenumbers was reached on the basis of numerical 
simulations in [33]. To understand the flux reversal leading to intermittency appears in 
the one-mode statistics, one has to consider fluxes in the multi-mode phase space which 
will be done in the next section. 
 
12. Intermittency and the multi-mode probability vortex 
 In the previous section, we established that one-mode PDF’s can deviate from the 
Rayleigh distributions if the flux of probability in the amplitude space is not equal to 
zero. However, in the full N-mode amplitude space, the flux lines cannot originate or 
terminate, i.e. there the probability “sources” and “sinks” are impossible, see (69). Even 
adding forcing or dissipation into the dynamical equations does not change this fact 
because this can only modify the expression for the flux (see the Appendix) but it cannot 
change the PDF continuity equation (65). Thus, presence of the finite flux for the one-
point PDF's corresponds to deviation of the flux lines from the straight lines in the N-
mode amplitude space. The global structure of such a solution in the N-mode space 
corresponds to a N dimensional probability vortex. This probability vortex is illustrated 
in figure 2 which sketches its projection onto a 2D plane corresponding to one low-
wavenumber and one high-wavenumber amplitudes. Taking 1D sections of this vortex 
one observes a positive one-mode flux at high k and a negative one-mode flux at low k, 
in accordance with the numerical observations of figure 2. We should say, however, that 
existence of the probability vortex solutions, although consistent with numerics, remains 
hypothetical and further work needs to be done to find solutions of (69) with non-zero 
curl. 
 
13. Discussion 
 In this paper, we reviewed recent work in the field of Wave Turbulence devoted to 
study non-Gaussian aspects of the wave statistics, intermittency, validation of the phase 
and amplitude randomness, higher spectral moments and fluctuations. We also presented 
some new results, particularly derivation of the analog of the Peierls-Brout-Prigogine 
equation for the four-wave systems. The wavefileds we dealt with are, generally, 
characterised by non-decaying      correlations along certain directions in the coordinate  
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Figure 2. Projection of the probability flux vortex on a (s1, s2) plane where s1 and s2 are the 
amplitudes at wavenumbers k1 and k2 such that k1 > k2. 
 
space. These fields are typical for WT because, due to weak nonlinearity, wavepackets 
preserve identity over long distances. One of the most common examples of such long-
correlated fields is given by the typical initial condition in numerical simulations where 
the phases are random but the amplitudes are chosen to be deterministic. We showed that 
wavefields can develop enhanced probabilities of high amplitudes at some wavenumbers 
which corresponds to intermittency. Simultaneously, at other wavenumbers, the 
probability of high amplitudes can be depleted with respect to Gaussian statistics. We 
showed that both PDF tail enhancement and its depletion related to presence of a 
probability flux in the amplitude space (which is positive for depletion and negative for 
the enhancement). We speculated that the N-dimensional space of N amplitudes, these 
fluxes correspond to an N-dimensional probability vortex. We argued that presence of 
such vortex is prompted by non-existence of a zero-amplitude-flux solution corresponding to 
the KZ spectrum with de-correlated amplitudes. Finding such a probability vortex 
solution analytically remains a task for future. 
 
14. Appendix: Wave Turbulence with sources and sinks 
 One of the central discoveries in Wave Turbulence was the power-law Kolmogorov-
Zakharov (KZ) spectrum,  which realise themselves in presence of the energy 
sources and sinks separated by a large inertial range of scales. The exponent  depends on 
the scaling properties of the interaction coefficient and the frequency. Most of the previous 
WT literature is devoted to study of KZ spectra and a good review of these works can be 
found in [1]. We are not going review these studies here, but instead we are going to find 
out how adding such energy sources and sinks will this modify the evolution equations for 
the statistics. Instead of the Hamiltonian equation (1) let us consider 
 

                
(98) 
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where  describes sources and sinks of the energy, e.g. due to instability and viscosity 
respectively. Easy to see that this linear term will not change the structure of the N-mode 
PDF equation (65) but it will lead to re-definition of the flux: 
 

                         (99) 
 
In the one-mode equations, this simply means renormalisation 
 

             (100) 
 
Thus we arrive at a simple message that the energy sources and sinks do not produce any 
“sources” or “sinks” for the flux of probability. 
 In the inertial range, there is no flux modification and one can easily find F = 0 
solution of (90) for the one-mode PDF, 
 

         (101) 
 

where  is the KZ spectrum (solving the kinetic equation in the inertial range). 
However, it is easy to check by substitution that the product of such one-mode PDF’s, 

 is not an exact solution to the multi-mode equation (65). 
Thus, there have to be corrections to this expression related either to a finite flux, an 
amplitude correlation or both. 
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