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Gravity Wave Turbulence in Wave Tanks: Space and Time Statistics
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We present the first simultaneous space-time measurements for gravity wave turbulence in a large
laboratory flume. We found that the slopes of k and w wave spectra depend on wave intensity. This cannot
be explained by any existing theory considering wave turbulence as the result of either breaking events or

weakly nonlinear wave interactions. Instead, we show that random waves and breaking or coherent

structures appear to coexist: The former show themselves in a quasi-Gaussian core of the probability
density function and in the low-order structure functions, and the latter in the probability density function

tails and the high-order structure functions.

DOI: 10.1103/PhysRevLett.103.044501

Recently, there has been significant progress in under-
standing the gravity water wave turbulence (WT) theoreti-
cally [1-7], with the help of numerical modeling [5,8—10],
field observations [11], and laboratory experiments [12—
14]. In our recent experiments in a large 2D flume [14], we
reported observations of WT with nonuniversal frequency
spectra whose slope changed from —6 to —4 as the wave
intensity increases. We explained this slope variation by
suppression of resonant wave interactions due to finite size
effects at lower amplitudes and by breaking waves at
higher amplitudes.

However, there still remains an uncertainty about im-
portant physical processes since the same frequency spec-
trum could arise from completely different theories. This
uncertainty could be resolved by measuring the k spectra
which are different for these cases or, even better, by
simultaneous measurement and juxtaposition of the w
and the k spectra. Furthermore, random waves and coher-
ent structures or breaks show different signatures in the
high-order statistics of the wave elevations. Breaking
waves, in turn, may be of different kinds, ranging from
the progressive-wave breaks with a limiting angle of 120°
typical for the open seas to vertical jet ejections typical for
the breaking of standing waves or waves reflected by walls
[15,16]. In laboratory flumes, it is not a priori clear which
kind will dominate, because a large nonlinearity leading to
breaking at the same time leads to wave decorrelations and
respective departure from the standing-wave structure of
the linear eigenmodes. To find which type of breaking
dominates, one can look for the wave break signatures in
the high-order statistics. With these motivations in mind,
we report here the first results on the statistics of grav-
ity wave turbulence obtained from simultaneous ¢ and x
measurements in the laboratory flume. We used the
data collected to analyze the w and the k spectra as well
as the higher-order structure functions in the ¢ and the
x domains.
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The experiments were conducted in the tank described
in Ref. [14] with an area of 12 X 6 m and a depth of 0.9 m.
A wave maker generated a superposition of two equal
amplitude waves with frequencies f; = 0.993 Hz and
f>» = 1.14 Hz. The angle between wave vectors k; and
k, was 9°, and k; was perpendicular to the plane of the
wave maker. At sufficiently large wave amplitudes, a cha-
otic wave field is formed in the middle area of the flume
due to multiple wave reflections and nonlinear interactions.

We used capacitance probes to measure the wave eleva-
tion as a function of time 7(¢). To obtain variations of the
wave elevation in space, we implemented an imaging
technique, similar to Ref. [17], with a thin vertical laser
light sheet illuminating the fluorescent surface layer of
water from below. The size of the imaged area was 1151 X
478 mm in the horizontal and vertical directions, respec-
tively, with a resolution of 0.9 mm. Typically, we collected
1200 images during a 20-minute time interval simulta-
neously with the continuous capacitance probe measure-
ment. This time interval defines an upper time scale for
statistical averages. The water surface boundary 7(x) was
detected from the images using standard MATLAB binariza-
tion and edge detection procedures. Images where the
boundary was not a single-valued function of x or when
it had significant jumps [|87(x)/8x| > 4] were excluded
(less than 3% of the total number).

All of the measurements described here were undertaken
with fixed excitation parameters and a stationary wave
field. To characterize the wave field intensity, we use a
nonlinearity parameter which is defined as the mean wave
slope at the energy containing the scale y = k,,A, where
k,, 1s the wave number corresponding to the maximum of
the energy spectrum |7, |> and A is the rms of 7(z). To
minimize the effects of the finite size of the flume on the
resonant wave interactions [4,5], we limited our observa-
tions to sufficiently strong wave fields with 0.1 <7y <
0.25.
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Most statistical wave theories predict universal energy
spectra £, « k™ #* and E, « w™ " with u, v = const. There
are three different predictions for o and v (leaving aside
the case of very weak waves [4,5]). In the weak turbulence
theory, w = 5/2, v = 4 [Zakharov-Filonenko (ZF) slopes
[3,18]]. Based on a dimensional argument, Phillips pre-
dicted » = 5 [7]. Kuznetsov [19] considered 1D breaks
propagating with a preserved shape and velocity V, which
corresponds to a Doppler-type dispersion law w = kV and
the spectral slopes u = v = 4 (Ku slopes). Kuznetsov also
pointed out that in this setup the Phillips » =5 would
correspond to OD (pointlike) breaks and, respectively, u =
3 (Ph slopes). A more complicated fractal distribution of
1D breaks was put forward in Ref. [20] which resulted in
the same slopes as Ku.

Our experimental spectra have relatively wide scaling
ranges in w and k; see, e.g., Fig. 1 for a k spectrum and
Ref. [14] for the w spectra. The slopes u of the energy
spectra in the k& domain as a function of the wave field
intensity (I = |n,|?, @ = 27f, and f = 3 Hz) are shown
in Fig. 2(a). A similar amplitude dependence for the in-
dices v of the w spectra was already presented in our
previous work [14]. Both » and u gradually decrease
when the wave intensity (nonlinearity) y increases.

Figure 2(b) shows the simultaneously measured k and w
slopes. As we see, the experimental points deviate signifi-
cantly from the linear dispersion relation @ = +/gk, which
indicates that the wave nonlinearity is not weak. We also
show the points corresponding to the Ph, ZF, and Ku
slopes. While both the Ph and the Ku points are rather
far from the experimental data, the ZF point could be
obtained by extrapolation to the higher wave amplitudes.
This result is rather surprising, because one would expect
the ZF theory to work better for weaker waves. However,
the finite flume size effects are more important for weaker
waves, which explains why there is a significant deviation
from the ZF spectrum at smaller wave amplitudes. With
the possibility to measure the k spectra, we can now re-
solve an uncertainty between the ZF and the Ku predictions
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FIG. 1 (color online). A spectrum in the k domain. The inset
shows an image with the detected boundary on the air-water
interface.

(both of which give the same slope in the @ domain). From
Fig. 2(b), one can conclude that both theories are not
confirmed exactly by our experiment, with the ZF predic-
tions somewhat closer to the observations. The Ku-type
breaks seem quite rare and do not contribute to the spectra
[and the second-order structure function (SF)]; neverthe-
less, they may leave their imprints on the scalings of the
high-order SF, as will be seen below. The dependence of
the spectral exponents on the wave intensity is likely to be
due to both the finite size effects and the increased number
of breaks or structures when the amplitude increases.
Visual observations show a variety of break types: Some
occur on the ridges of running waves and some as localized
vertical splashes. The prevalence of a particular break
morphology is likely to be affected by the finite flume
size via the interference of waves reflected from the walls.

In order to distinguish between particular kinds of co-
herent structures and incoherent random waves (which
sometimes have the same spectra), let us consider the
higher-order correlators. By analogy with hydrodynamic
turbulence, our object for the high-order statistics will be
not the wave elevation itself but its space and time incre-
ments of different orders. The latter are defined as 851) =
n(x+ 1) — n(x) and 87 = n(x + 1) — 2n(x) + n(x —
[), etc., for spatial and as s = n(t + 7) — n(r) and
8 — n(t+ 7) —2n(t) + n(t — 7), etc.,, for temporal
variables. In 55”, all »’s are taken at the same ¢ and in
8 at the same x.

The moments of the increments, known as the structure
functions, are defined as SE/)(p) = <(5§j))1’) and S(Tj)(p) =
((8)P) for the space and the time domains, respectively,
where the angle brackets denote averaging over x or ¢. For a
stationary random process characterized by a power-law
spectrum, the structure functions will also vary as power
laws SY(p) ~ 1€0) and §Y(p) ~ 7¢P) in the limits of
small [ and 7, respectively. The scaling exponents £(p)
and /(p) contain information about the turbulence inter-
mittency and participating random-phased and coherent
components. If we assume that our wave field is composed
of modes with random phases, then the height increments

-2.8 -2.4
e 26 ﬁ'/
3 b 2.8 -
! 3 e o2
g o2 g a2 ;
» ® ¥
x 3.4 x -3.4
+ 3.6
3.6 ¢
-3.8
+ Ku
3.8 “
'0.02 0.04 0.06 0.08 0.1 0.12 54 52 -5 -4.8 -4.6 -4.4 -4.2 -4
(@) <I>at3Hz (b) ® slope

FIG. 2 (color online). Slopes of the wave spectra. (a) The k
slope as a function of wave intensity. (b) The & slope vs the w
slope. The linear dispersion relation w = \/gk is shown by the
solid line.
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should follow the Gaussian statistics. For this case we can
calculate (see for details [21]) S;j)(p) ~ PR=D/2 4y <

2j + 1; otherwise, SEJ)(p) ~ [PJ because the field is j times
differentiable. Similarly, in the time domain we have for
the random-phased field SY(p) ~ 7P~ D/2if p < 2j + 1;
otherwise, S(Tj)(p) ~ 7Pi,

The SFs for a class of singularities with the profile
1n(x) = const — Alx|* with 0<a =1 and A >0 were
calculated in Ref. [21] for singularities of different (pos-
sibly fractal) dimensions D: 0 = D <2 (e.g., 0 for Ph and
1 for Ku). Parameter a >0 describes the singularity
strength; e.g., for a <1 the breaks are sharper than the
Ku-type A-shaped ridges at @ = 1. Such singular coherent
structures give SV (p) ~ 1P/ + 2~P*ap_ The first term in
this expression is a contribution of the smooth humps, and
the second one is due to the coherent structures. In the limit
[ — 0, the term with the smallest power will be dominant.
Thus, the structures of Ph or Ku type, i.e., with a =1,
would not be seen for the first-order increments, and we
would have to consider j = 2. However, one should keep
in mind that the finite range of excited scales makes de-
termination of the scalings less precise for higher j because
of the larger number of SF points to be placed in this finite
range. Therefore, it is better to consider the lowest j for
which the scalings induced by the coherent structures can
be extracted (j = 2 in case of the Ph and Ku).

Now suppose that the wave field is bifractal and consists
of two components: random-phased modes and singular
coherent structures. Avoiding the choices of j for which the
field is j times differentiable, we have in this case SE’ )( p) ~
[Pu=0/2 4 2=D+ap If g < (u — 1)/2, we expect to see
the scaling associated with the incoherent random-phased
component at low p’s (first term on the right-hand side) and
the singular coherent structure scaling at high p’s (second
term on the right-hand side).

Similarly, one can consider the SFs of the time incre-
ments. Assuming, following Kuznetsov, that the coherent
structures could be thought of as passing the wire probes
with constant velocity, we should obtain the time-domain
scalings to be identical to the space-domain scalings, i.e.,

Sg)(p) ~ 727D*ar_ For the incoherent component,

SY(p) ~ 1P*=1/2 Assuming again that incoherent waves
and the singular structures are present simultaneously, we
have SY(p) ~ rP(*~D/2 4 72-D+ap_ Ag before, the order j
is chosen in such a way that the field associated with the
incoherent wave component is not j times differentiable in
time. For example, for spectra with 3 < v <5 (e.g., for the
ZF spectrum) one should use j = 2, and for 5 < v <7 one
should use j = 3, etc.

To present results on the probability density functions
(PDFs) and the SFs, we select the experimental run with
spectra E;, ~ k=39 and E,, ~ w~*33. Because for each of
these spectra both k and w slopes are steeper than —3
but shallower than —5, we choose to work with the second-

order increments, j = 2. Experimental PDFs of the
height increments in space and time are shown in
Fig. 3(a) and 3(b), respectively. For the space increments,
one can see clearly deviations from Gaussianity at the (fat)
PDF tails which are related to intermittency and indicate
the presence of the coherent structures. For the time incre-
ments, the deviations from Gaussianity are much less
pronounced, which could be due to the slow propagation
speed of the coherent structures leading to their more
infrequent occurrence in the ¢ domain in comparison with
the x domain. Both the #- and the x-domain PDFs are
asymmetric (with the negative increments dominant)
which results from breaks occurring at wave crests rather
than troughs.

In our data on the SFs, both S(Tz)( p) as a function of 7 and

S 52) (p) as a function of / exhibit clear power-law scalings in
the range of scales corresponding to the gravity waves for
all p at least up to 8; see Fig. 3(c) [due to the lack of space,
we present only ng) (p)]. The SF exponents for the time and
space domains are shown in Fig. 4. Straight lines in these
graphs represent the ZF scaling (solid red line), scaling of
waves with the spectrum as measured in the experiment
(dashed green line), and the fit of the high-p behavior with
a scaling corresponding to singular coherent structures
(dashed-dotted blue line). For the time domain, the scaling
at low p is close to the ZF scaling; this is surprisingly more
consistent than with the scaling calculated from the actual
measured spectrum. For an infinite scaling range, the p =
2 point must, of course, lie exactly on the value corre-
sponding to the spectrum (v — 1) irrespective of the pres-
ence or absence of the phase correlations. Thus we
attribute the observed discrepancy to the finite size of the
scaling range. Furthermore, the fit of the high p depen-
dence indicates the presence of singular coherent structures
with D =1 and a = 1.05 that is very close to the Ku’s
D=1landa=1.
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FIG. 3 (color online). PDFs of the second-order differences:
(a) in the ¢t domain, 7 = 30, 60, 130, 290, and 580 ms (from the
top down); (b) in the x domain, [ = 54, 11, 25, 62, 149, and
360 mm (from the top down); (c) SFs of 5(5) forp=1,...,8.
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FIG. 4 (color online). SF scaling exponents: (a) {(p) in the ¢
domain and (b) £(p) in the k domain.

For the space domain, at low p there is an agreement
with the scaling of the random-phased waves having the
actual measured spectrum and less agreement with the
random-phased waves having the ZF spectrum. This is
not surprising since the scaling range in k is greater than
in w, and therefore there is a better agreement between the
spectrum and the SF exponent for p = 2. More impor-
tantly, we see again the dominance of the random-phased
waves in the low-order SFs and the dominance of coherent
breaks in the high-order SFs. The fit at high p’s gives for
the dimension and the singularity parameter of the breaks
D = 1.3 and a = 1/2, respectively. We see that the breaks
appear to be more singular and ““spiky”’ than the Ku-type
breaks (a = 1). Visually, we observed numerous occur-
rences of these kinds of spiky wave breaks, which are
propagating very slowly and producing vertical splashes.
These kinds of structures should be probable in isotropic
wave fields due to the collision of counterpropagating
waves, which in our flume appear due to wave reflections
from the walls. The slow propagation speed of such breaks
means that they cross through the capacitance probe in-
frequently even if there is a large number of them in the x
domain (i.e., more than the Ku-type breaks). This could
explain why the Ku breaks show up in the SF scalings in
the ¢ domain, whereas more singular spiky structures are
seen in the x domain.

In summary, our experimental data show that the spec-
tral exponents, in both w and &, depend on the amplitude of
the forcing. None of the existing theories that rely on either
the presence of random-phased weakly nonlinear waves or
the dominance of coherent wave crests of a particular type
can fully explain these results. Instead, there is an indica-
tion that the gravity wave field consists of coexisting and
interacting random and coherent wave components, as it
was speculated before from open-sea radar measurements
[22]. The random waves are captured by the PDF cores and
the low-order SFs, whereas the coherent wave crests leave
their imprints on the PDF tails and on the high-order SFs.
The wave crests themselves consist of structures of differ-

ent shapes: numerous nonpropagating spikes or splashes
(which show in the x-domain SFs) and propagating
Ku-type breaks (seen in the -domain SFs). We hope that
our technique based on SF scalings can be useful in future
for analyzing the open-sea data, as well as to the future WT
theory describing the dynamics and mutual interactions of
these coexisting random-phased and coherent wave
components.
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