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Two new effects the drift turbulence can display are disclosed: ( 1) the turbulence spectrum in k-space separates into uncon- 
nected corn ponents of large and small scales, (2) the very presence of weak small-scale turbulence imposes rigid restrictions on 
powerful large-scale components. 

1. A wide variety of problems in the physics of the 
atmosphere and the ocean [ 1,2 1, in physics of mag- 
netized plasmas [ 3-61 and in astrophysics leads to 
a study of drift-type waves of Rossby waves having 
the dispersion law 

Bk 
w=l+pZk2 

(k= (k,, k,) is a wave vector; 8, p are constants). 
The nonlinear interaction between waves may be 
different (see refs. [ l-91 ). For definiteness we con- 
sider the nonlinear dynamics of the waves to be de- 
scribed by the Chamey-Hasegawa-Mima (CHM ) 
equation [ 1,3,4]: 

When the nonlinearity is small enough, then for a 
statistical description of the system of drift-type 
waves one can use the kinetic equation for waves 
[ 101: 

x&k+k, +kz)S(sl,+J&, +L&) 

x [nk, nkz +nknkr sidwkwkd 

+nknk, siidWkWkl) ]dh a2 +Yknk, (3) 

where nk= ek/wk is the wave action spectrum (or the 
number of quasiparticles with momentum k), Ek is 
the spectrum of the energy 

E=f j. [w*-W)*l~dy, 

nk=n_k, yk is the linear growth rate, I/lsk& are the 
matrix elements of the wave interaction; in the case 
of the CHM equation we have [ 111: 

Vk,k,,b = - - ix I BkxhxL I I’* 

In eq. (3) we have used the function 

Bp*k,k* 
s2,=gk,-W,=----- 

1 +p*k* ’ 
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which will be significant later on; the quantity --Ok 
is the wave frequency in the reference frame moving 
with the drift velocity ft. Under the condition 7k----0 
eq. (3) conserves the energy E, the enstrophy (x- 
momentum) Px and y-momentum Py: 

E =1 f ItOklnkdk, 

P =  (Px, Py) = ½ ~ k sign k~ nk dk .  

2. In the investigation of turbulence one often con- 
siders only near-scale interaction to be essential. By 
means of this interaction the energy (or some other 
conserved quantity) cascades step by step from large 
to small scales (or conversely). This assumption, 
called the hypothesis of locality of turbulence, is a 
ground for the Kolmogorov-Obukhov [ 12,13 ] spec- 
trum of  hydrodynamic turbulence; this spectrum is 
completely determined by the energy flux from the 
large to small scales. The spectra, determined by the 
flux of energy or enstrophy through the scales, have 
also been found for weak (i.e. with small nonline- 
arity) turbulence of the drift-type waves (see refs. 
[ 14-16 ] ). The analysis of these spectra shows that 
the turbulence of the drift type waves appears to be 
nonlocal (these results will be published separately 
[ 17-19 ] ). On the basis of this analysis one can as- 
sume that the evolution of the turbulence is mainly 
determined by the interaction with only large-scale 
turbulence. This is also indicated by some experi- 
mental facts. For example the observation of plasma 
turbulence in the F-layer of the equatorial iono- 
sphere in the range of scales appropriate to the drift 
waves (5 m) < I k l - ~ < 100 m, in this connection 
p ~ 5  m) show that the spectrum nk behaves as 
Ik1-6.5. Since the collision integral diverges on such 
spectra at k--,0 [18], according to these observa- 
tions the nonlocal interaction with the large scales 
seems to be dominant. Computer experiments also 
show a strong concentration o f  the spectrum in the 
region of small ikl [21,6].  

3. Thus we presuppose that the evolution of the 
spectrum nk (when Ikl is not too small) is mainly 
determined by the interaction with the large-scale 
turbulence characterized by small wave vector p: 

I P I << I k I, p I P I << 1. Then the kinetic equation (3) 
may be written as follows: 

0nk=2 4hi Vk,p,__k-- p 12 
Ot 

x &(£2k+v --12k) np(nk+p -- nk) dp+ 7knk, 

Ipl << lk l ,p  -~ , (5) 

the term nknk+p is neglected since the quantity n v is 
considered to be sufficiently large; the quantity t2p is 
also neglected because it is of third order in [Pl while 
the difference 12k+v--12k is of first order. In the ref- 
erence frame moving with the drift velocity fl the 
large-scale turbulence may be considered to be fro- 
zen (g2" ~ 0). On the background of this turbulence 
the high-frequency quanta are moving with their en- 
ergy Ok conserved. 

In accordance with eq. (5) the spectrum evolution 
occurs in k-space independently of each of the curves 

Ok = V= const (6) 

shown in fig. 1. Under the condition 7k=0 eq. (5) 
conserves the number of quasiparticles on each curve 
(6): 

N ( v ) =  f nktJ(K2k--v)dk, 

v) = [ nkTk~(12k -- V) dk .  (7) N( 
.1  

/l 

( & 

Fig. 1. 
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As the quantity IPl is considered to be small eq. (5) 
reduces to the differential equation 

Onk O.Qk D D 
Ot - Ok~ ok, S Dkyy nk + Tknk - (s)  

which describes one-dimensional diffusion of the 
high-frequency [quanta along the curves (6); D /Dk  r 
denotes differefltiation with respect to ky under con- 
stant V=t2k: 
D d 0 

Dky--¢-ff'~ "l" Olc'y' 
where 

Oak~Ok,, 2kxky 
¢a= O£2k/Okx = k2( 1 +p2k2) +2k2x" 

The diffusion coefficient S is of the form 

i 2 n 1 _2d_  • X 4~t[ I Vl~,p,-k-pl p.Ipx=--(ap~P.V ~"ly, 
- - o o  

in the ease of the matrix element (4) 

S=f(k) ~ p~n(-~py, py)dpy, (9 ' )  
- - o o  

where 

f (k)-  8re kS(~+p2k2)2(l+p2k2)lk~kyl 
tip* [k2( 1 +p2k2) + 2k 21 s 

Redistribution of turbulence between the curves 
(6) is a sloweir process than diffusion along the 
curves, and it i s determined by some corrections to 
eq. (8) which may turn out to be not reducible to the 
form of a differential operator. The possibility to dis- 
regard these corrections is in principle based on the 
fact that the curves (6) are non-closed and go to in- 
finity, where strong enough dissipation always takes 
place. Indeed, if the quantity ~k was positive every- 
where on some Curve (6), the number of particles on 
this curve would grow until infinity (see (7)).  In this 
case it is necessary to consider the departure of the 
particles from this curve, and eq. (8) without cor- 
rections proves !to be insufficient. It can he shown 

[ 19 ] that for noulocal turbulence in the case of  iso- 
tropic media the wave interaction in the lowest order 
occurs also along curves in k-space, but in this ease 
these curves have the form of circles [k[ =const. As 
a rule the quantity 7k is everywhere positive on some 
of these circles; and therefore in this case taking ac- 
count of the nonlocal interaction in the lowest order 
only is not sufficient. 

4. Let us look for the behaviour of the energy and 
the momentum on a curve (6): 

E(v)=½ ~ I~klnk6(~--v)dk, 

P(v)=½ ~ ksign kx nkJ(ffAk-v)dk. 

According to eq. (8) 

2E(v) sign v 

=fl i ,Qdky+ i tOkYknk(~)-'dkv, 
- - o o  - - o o  

2P~(v) sign v 

= - i  ~9Qdky+ i kxYknk(~o-~x)-tdk,, 
- - a o  - - o o  

2Py(v) sign v 

i Qdkj,+ i '  [OI2k'~-t = KyYknkk~'~ j dkv, 
--oo --oo 

(10) 

where Q= -S  Dnk/Di~ is the flux of particles along 
the curve (6). In these integrals the integration is 
carried out along the curve (6), i.e. the variable kx 
is considered to be a function of the variable ~ im- 
plicitly defined by the equation ~(k~  ky) =v. As far 
as the total energy and impulse are conserved when 
7k=0 the first terms in expression (10) taken with 
minus sign give the fluxed of energy and momentum 
into the large-scale turbulence. Formulae (10) have 
an intuitive physicalmeaniag, When the particles are 
moving along the curve (6 ) f rom the source in the 
range of small I kyl to the region of dissipation in the 
range of large I kyl,, they are going over to the states 
with smaller values ofo~k and kx but with large values 
of {kyl. In this way the particles lose their energy and 
enstrophy hut gain y-momentum. 
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5. If the spectrum np of the large-scale turbulence 
is given the quantity S is a fixed function of the wave 
vector k. Then the character of the evolution of  the 
spectrum of the small-scale turbulence is determined 
by the solution of the eigenvalue problem: 

O~2k D _ D  
~nk= -fff~ Dk~ S B-f~ nk + ~n~ , 

Q=o(1/k~), k~-~ + ~ ,  (11) 

where the quantity 7k is analogous to the potential in 
the Schr'6dinger equation. For the drift-type waves 
in different physical situations the form of the func- 
tion 7k proves to be roughly the same (see refs. [20- 
22,6] ); as a rule 7k is positive in some domain ad- 
joining the axis k~ and reaches its maximum value 
at some point of  the axis kx. As time tends to infinity 
the spectrum on the curve (6) approaches the ei- 
genfunction ~(kj,, v) corresponding to the maximum 
eigenvalue A-(v). This eigenfunction is everywhere 
positive. If for some v the quantity A-(v) <0  then the 
spectrum on the curve (6) exponentially tends to 
zero. The rate of  departure of the particles into the 
dissipation region (Tk<0) by means of diffusion is 
greater than the supply of particles by the source 
(Yk> 0). If  ~ (v )>  0 then the spectrum on the curve 
(6) exponentially grows. The supply of particles by 
the source is greater than the rate of  their departure 
into the dissipation region. 

Thus, if there exist values of v such that A-(v)> 0 
(these ones correspond to the curves (6) with large 
enough growth rates 7k>0) then according to (10) 
the energy flux to the large-scale turbulence grows 
and causes an increase of its spectrum np. It is nat- 
ural to expect that this leads to an increase of tbe  dif- 
fusion coefficient (9) (i.e. to an increase of  the de- 
parture of particles into the dissipation region), and 
consequently results in a decrease of  the eigenvalues 
A-(v). As far as each curve (6) passes over the region 
of strong enough dissipation the eigenvalue A-(v) al- 
ways becomes negative under sufficiently large in- 
crease of the diffusion coefficient S. Therefore the 
interval of  those v for which A-(v) > 0 will narrow with 
time until it degenerates to a point Vo, with 2-(Vo) = 0 
(on the curve g2(k) = Vo the growth rate is greatest in 
some sense). Thus the turbulence spectrum in k-space 
will be separated in k-space into two unconnected 
components: the large-scale turbulence and the jet 

spectrum of the small-scale turbulence concentrated 
on the curve £2 (k) = vo (intermediate scales will "die 
out" ). 

6. It follows from the above reasoning that the 
presence of small-scale turbulence imposes rigid re- 
strictions on the large-scale turbulence (although the 
latter possesses much more energy than the former 
one). For the wave vectors k from some curve (6) 
the quantity S(k)  depends on the magnitude of the 
large-scale turbulence spectrum np only in the sector 

[Px/Pr[ <~ma~(V) =max[~(ky,  v)[ , 

- o o < k y < o o  (12) 

(see (9) ) ,  which proves to be comparatively nar- 
row, ~ , ~ ( v ) ~ 0  when v-~oo (see fig. 2). Let the sec- 
tor (12) at V=Vo be so narrow that the large-scale 
turbulence spectrum np in this sector (12) is defined 
by its asymptotics for small Px: 

n(px, py) _ IP~ I ~g(Py), 

were z is a number, and g(py) is some function (e.g. 
if the wave action spectrum has no singularity and 
does not become zero on the axis ky, then z=0,  
g(py) = n (O, py); if  the energy spectrum Ek possesses 
such a property, then z= - 1, g(py) =E(O, py) ). In 
this situation expression (9 ' )  for the quantity S 
factorizes: 

S=#f (k )~  ~ , 

where/~ does not depend on the vector k: 

l~= i p~y+~g(py)dpy. (13) 
-oo 

~m~ 

O.5 1 ~r 
I I ~-- 

Fig. 2. 
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To find the "survival curve" (i.e. the curve ~ ( k )  = Vo, 
on which the je t  spectrum is eventually concen- 
trated) we need to solve for all curves (6)  the ei- 
genvalue problem for the equation 

Q - i  
D . ,  D /O k~ lt~-'~Jq~ ~nk+~-ff-~} ? k n k = 0 ,  

with the boundary  conditions (11 ) and under  the 
condit ion nk> 0. In this way we find for each curve 
(6)  the eigenvalue and the eigenfunction a(ky, v). 
The "survival curve" t2(k)=Vo corresponds to that 
value Vo which is the max imum point o f  the function 
/z(v). Hence the large-scale turbulence must  evolve 
to the state with the integral characteristics equal to 
the eigenvalue/Zo =/z  (Vo): 

i p~+~g(py)dpy=lZo= max /~(v).  
O ~ U < O o  

Thus the presence o f  weak small-scale turbulence 
fixed the level o f  large-scale turbulence. 

The spectrum of  the small-scale turbulence evolves 
to the jet spectrum, whose shape is defined by the 
eigenfunction r~(ky, v) and whose amplitude is found 
from the condition that t h e  energy flux from the 
"survival curve" ought to be equal to the rate o f  dis- 
sipation in the] large-scale turbulence. I f  the dissi- 
pation in the large scales is practically absent, then 
the amplitude [of the jet spectrum becomes zero. 
Nevertheless th~ integral characteristic (13) must  be 
equal to the eigenvalue/zo. 
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