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We consider superfluid turbulence near absolute zero of temperature generated by classical means, e.g.,
towed grid or rotation but not by counterflow. We argue that such turbulence consists of a polarized tangle of
mutually interacting vortex filaments with quantized vorticity. For this system, we predict and describe a
bottleneck accumulation of the energy spectrum at the classical-quantum crossover scale �. Demanding the
same energy flux through scales, the value of the energy at the crossover scale should exceed the
Kolmogorov-41 �K41� spectrum by a large factor ln10/3�� /a0� �� is the mean intervortex distance and a0 is the
vortex core radius� for the classical and quantum spectra to be matched in value. One of the important
consequences of the bottleneck is that it causes the mean vortex line density to be considerably higher than that
based on K41 alone, and this should be taken into account in �re�interpretation of new �and old� experiments
as well as in further theoretical studies.
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INTRODUCTION

Turbulence in superfluid liquids, such as 4He and 3He at
very low temperatures, is an intriguing physical problem by
itself because it comprises a system where the classical phys-
ics gets gradually transformed into the quantum one during
the energy cascade from large to small scales.1,2 Recently,
renewed broad interest on this subject has been motivated by
an impressive progress in experimental techniques and new
results, which has led in �at least� a conceptual understanding
of classical and quantum limits of the superfluid turbulence,
see, e.g., Refs. 3–15. Our paper, in turn, attempts to shed
light on the physics of the superfluid turbulence behavior in
the intermediate region near the classical-quantum crossover
scale. We will see that transition of the turbulent energy cas-
cade from the classical to the quantum scale is accompanied
by a transition from strong hydrodynamic to weak wave tur-
bulence with a bottleneck stagnation at the crossover scale.

Generally, the superfluid turbulence near zero temperature
�for an introduction, see Refs. 1–3� can be viewed as a tangle
of quantized vortex lines. If turbulence is produced by clas-
sical means and not by a counterflow, then at the scales much
greater than the mean intervortex distance �, the vortex dis-
creteness is unimportant, so that the superfluid turbulence
has essentially a classical character described by the
Kolmogorov-41 �K41� approach.3 As we will see below, vor-
tex lines in K41 state are polarized, i.e., tend to be codirected
and organized in bundles. Since there is no viscosity or fric-
tion in a superfluid liquid near zero temperature, the classical
energy cascade proceeds down the spectrum to the scale of
order � without dissipation, where the vortex discreteness
and quantization effects become important. Even though
some negligible part of the energy is lost, for example, by
radiation of phonons generated due to slow vortex motions
and intermittent vortex reconnections, the dominant part of
the energy proceeds to cascade below the scale � by means
of nonlinearly interacting Kelvin waves,3,12,13,16 which were
theoretically predicted in the 19th century17 and first experi-
mentally observed by Hall.18 We emphasize that the fact that

the turbulence is produced by classical means is important
here, because the resulting polarization inhibits further vor-
tex reconnections and prevents rapid fragmentation into vor-
tex loops with sizes smaller than �. Thus, the main cascade
carrier below scale � will be Kelvin waves, which are gen-
erated by both slow vortex filament motions and fast �but
rarer and localized� vortex reconnection events. Such recon-
nections produce sharp bends on the vortex lines and, there-
fore, generate a broader range of wavelengths than the slow
vortex motions. However, the spectrum of the reconnection
forcing decays with the wave number k sufficiently fast, and
could effectively be thought as a large-scale source of Kelvin
waves located at the crossover.15 Traditionally, the K41 spec-
trum is assumed to maintain its shape all the way down to
the crossover scale, which, due to such an assumption, is
calculated based on the K41 spectrum.3

In this paper, we demonstrate that, in contrast to the tra-
ditional viewpoint, the classical turbulent spectrum cannot be
matched to its quantum counterpart at the same value of the
energy flux because this flux requires much stronger levels of
turbulence to be able to propagate through scales in sparse
distributions of quantized vorticity. This leads to a bottleneck
accumulation of the energy spectrum near the crossover scale
which, in turn, significantly changes the position of the
crossover � �see Fig. 1� and the relationship between the
energy flux and vorticity, which have widely been used in the
interpretation of experimental results. Notice that the phe-
nomenon of bottleneck accumulation between two energy-
flux spectra of different nature is not peculiar to the super-
fluid turbulence and may occur, for example, in the
atmosphere, ocean, and magnetosphere.

I. POLARIZATION OF THE VORTEX TANGLE

It is important to emphasize that the turbulence we con-
sider in this paper is generated by classical means, e.g., by a
towed grid11 or by rotation,5–7 but not by a counterflow. In
the latter case, the vortex tangle would be unpolarized and
neither would we expect K41 spectrum for the scales greater
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than � �K41 is polarized, see below� nor would we expect
Kelvin waves to be important for the scales below � �recon-
nections would be more important, see Ref. 19�. On the other
hand, polarization of the vortex tangle allows to shape large-
scale vortex motions characteristic to the K41 cascade, and it
also inhibits local reconnections and makes Kelvin waves a
dominant vehicle for the turbulent energy cascade toward the
small scales. Thus, let us consider the phenomenon of vortex
polarization in greater detail.

Intuitively, polarized vortex tangle can be viewed as a set
of vortex bundles, so that in each bundle the vortex filaments
have the same preferential direction. The simplest way to
achieve such a polarization is to subject the system to an
external rotation or shear. However, as we will see below,
even isotropic and homogeneous turbulence can be, and of-
ten is, polarized.

Let us formalize this picture by giving a mathematical
definition of the vortex tangle polarization. Consider a circu-
lar disk of radius R with randomly selected position of its
center and its orientation in the three-dimensional �3D�
space. The velocity circulation over the contour of this disk,
��R�, is obviously equal to the quantum circulation � �see
Eq. �5�� multiplied by the difference between the number of
vortices crossing the disk in the positive and negative direc-
tions with respect to the normal to the disk,

��R� = ��N+ − N−� . �1�

The totally unpolarized system is represented by a vortex
tangle, in which every vortex line consists of a chain of small
uncorrelated segments �as in Ref. 19�. In this case, the disk
crossings would be completely random, and the mean value
of �2 would be determined from the central-limit theorem.
Namely, if the sign of each crossing is completely random

and statistically independent of all the other crossings, then
the total circulation � has zero mean and the standard devia-
tion is equal to the standard deviation for the circulation of
an individual crossing �2 times the total number of terms in
the sum �i.e., the number of crossings�,

��2� = �2�N+ + N−� � �2�R/��2, �2a�

where � is the mean intervortex distance. We say that this
state has zero polarization, P=0. Thus, the polarization P
can be defined as a degree of deviation from this unpolarized
state. For example, in the completely polarized system, all
vortex lines would be in a perfectly aligned state, e.g., N−
=0 and N+�0, so that

��2� = �2�N+
2� � �2�R/��4. �2b�

We say that in this state P=1. Let us now define polarization
P by interpolating between these two limits. Namely, we will
assume that the system is in a scaling state such that

��2� = �2�N+
2� � �2�R/���, �3a�

with some constant index �. Then, for this state, the polar-
ization is defined as

P = �/2 − 1. �3b�

Note that, in principle, one can have a vortex system in
which P�0, e.g., an ordered grid structure composed of al-
ternating positive and negative vortices. However, the alter-
nating periodic structures are unstable and would quickly
break up due to reconnections.

Polarization of turbulent states with power-law spectra is
considered in Appendix B, describing three different cases.
For very steep spectra, P=1; for very shallow spectra �in-
cluding the thermodynamic state�, P=0; and for intermediate
spectra �including K41�, P depends on the spectral slope and,
therefore, contains a nontrivial information about the turbu-
lent scalings. For K41 turbulence, we have

��2�K41 � �2/3R8/3. �4�

In this case, ��2� can also be obtained from the dimensional
analysis. Thus, for K41 turbulence, we have �=8/3 and po-
larization P=1/3.

Therefore, the vortex tangle associated with the K41 cas-
cade state is polarized. Note that in the presence of bottle-
neck �described below� there will also be a contribution of
the thermalized part of the spectrum. However, this part is
much less than that of the K41 contribution for large R /�.
On the other hand, at scale R�� �and obviously for R���,
the notion of polarization becomes vague and useless, so one
should not attempt to find P for these scales.

Significant polarization associated with K41 cascade at
large scales leads to grouping of the adjacent vortex lines
into bundles with predominantly parallel orientation, which
obviously inhibits reconnections and which selects Kelvin
waves to be the dominant carrier of the downscale energy
cascade. This picture is self-consistent because, as we will
see later, only weak Kelvin waves are needed to carry the
energy cascade of the same strength as in the large-scale K41
part. Associated with such weak waves, small bending angles
will not allow the adjacent �collinear� vortex lines to ap-

FIG. 1. �Color online� The energy spectra Ek in the classical, k
�1/�, and quantum, k�1/�, ranges of scales. Two straight blue
�dark gray� lines in the classical range indicate the pure K41 scaling
Ek

K41�k−5/3 �Eq. �12�� and the pure thermodynamic scaling Ek�k2.
For the quantum range, the red �gray� solid line indicates the Kelvin
wave cascade spectrum �Eq. �11�� �slope −7/5�, whereas the green
�light gray� dash-dotted line marks the spectrum corresponding to
the noncascading part of the vortex tangle energy �slope −1�.
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proach each other and reconnect. On the other hand, it
should be emphasized that the dominance of Kelvin waves
over the vortex reconnections still remains a hypothesis,
even though a very plausible one. In this picture, the regions
of reconnections are intermittent and limited to locations
where two vortex bundles clash, see Fig. 2. Kelvin waves
generated by such localized reconnections will spread in
space along the vortex lines into the vortex bundles. There-
fore the resulting wave distributions will be much less local-
ized in space than the reconnections. Note also that the re-
connections in this picture do not lead to a creation of vortex
loops of size � or less and, therefore, cannot trigger a cascade
of further fragmentation of such loops, as would be the case
in unpolarized tangles in counterflow experiments.19 Assum-
ing that the large-scale dynamics of strongly polarized sys-
tems is similar to the classical flows described by Euler
equations, one could imagine a classical prototype process in
which reconnections will intermittently occur in locations of
�yet to be proven to exist� singularities of the Euler equa-
tions. One can also see a clear analogy with reconnections of
magnetic field lines in magnetohydrodynamics with Alfven
or whistler waves being similar to Kelvin waves.

II. KINETICS OF INTERACTING KELVIN WAVES

Let us describe the statistics of Kelvin waves on thin vor-
tex filaments and their role as a carrier of the energy cascade
at scales less than the interline separation �. Here, we briefly
give an overview of the results of Kozik and Svistunov on
this problem12 �hereafter referred to as KS-04� with modifi-
cations and clarifications, particularly keeping an explicit ac-
count of the logarithmic factors which will be important for
the effects found in our work. The motion of the tangle of
quantized vortex lines can be described by the Biot-Savart
equation1,2 �BSE� for the time evolving radius vector of the
vortex line element s�� , t�, depending on the arc lengths �
and time t. When the typical interline spacing � is large in
the sense 	=ln�� /a0�
1 �a0 is the vortex core radius�, this
equation can be simplified by the so-called local induction
approximation �LIA�.20 Both BSE and its LIA can be written
in the Hamiltonian form:16

i�ẇ = �H�w,w*	/�w*,

where w�z , t�=x�z , t�+ iy�z , t�, with x and y being small dis-
tortions of the almost straight vortex line along the Cartesian
z axis. The BSE and LIA Hamiltonians are

HBSE =
�2

4�

 �1 + Re�w�*�z1�w��z2��	dz1dz2

��z1 − z2�2 + �w�z1� − w�z2��2
, �5a�

HLIA =
�2	

2�

 ��1 + �w��z��2	dz ,

� = 2�/m , �5b�

where primes denote the z derivatives, � is the quantum of
velocity circulation, and m is the particle mass. Without the
cutoff, the integral in HBSE �Eq. �5a�� would be logarithmi-
cally divergent, with the dominant contribution given by the
leading order expansion of the integrand in small z1−z2,
which corresponds to HLIA �Eq. �5b��.

It is well known that LIA represents a completely inte-
grable system and it can be reduced to one-dimensional non-
linear Schrodinger equation by Hasimoto transformation.21

However, it is the complete integrability of LIA that makes it
insufficient for describing the energy cascade and which
makes it necessary to consider the next order corrections
within the BSE model.

Assuming that the Kelvin wave amplitudes are small with
respect to their wavelengths, i.e., w��1 �the self-consistency
of this assumption is checked by an estimate of the nonlin-
earity parameter, see Eq. �16��, we can expand the Hamilto-
nians �5� in powers of w�2: H=H0+H2+H4+H6+ . . .. Next
step is to consider a periodic system with the period length L
�L→� to be taken later� and to use the Fourier representa-
tion w�z , t�=�−1/2ka�k , t�exp�ikz�, in terms of which the
Hamiltonian equation takes the canonical form

i�a�k,t�/�t = �H�a,a*	/�a�k,t�*

with a new Hamiltonian H�a ,a*	=H�w ,w*	 /L=H2+H4

+H6+ . . . . With aj =a�kj , t�:

H2 = 
k

�ka�k�a*�k�, H4 =
1

4 
12,34

T12,34a1a2a3
*a4

*,

H6 =
1

36 
123,456

W123,456a1a2a3a4
*a5

*a6
*. �6�

Here, �k is the Kelvin wave frequency, and interaction am-
plitudes T12,34 and W123,456 are functions of k1¯k4 and
k1¯k6, correspondingly. Summations over k1¯k4 in H4
and over k1¯k6 in H6 are constrained by k1+k2=k3+k4 and
k1+k2+k3=k4+k5+k6, correspondingly. One gets for func-
tions in the Hamiltonians:

�k
BSE = �	�k�k2/4�, 	�k� = ln�1/ka0� ,

T1,2;3,4
BSE = k1k2k3k4�	�kef� + F1,2;3,4�/4� ,

Flow

Fl
ow

W
av
es

W
aves

FIG. 2. A sketch of typical reconnection of vortex lines in po-
larized vortex tangles. A clash of two vortex bundles results in a
localized reconnection region. Kelvin waves generated by the re-
connections propagate away from the localized reconnection region
and spread in space along the vortex lines.
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W1,2,3;4,5,6
BSE = 9k1k2k3k4k5k6�	�kef� + F1,2,3;4,5,6�/32�� ,

�7a�

�k
LIA = �	k2/4�, T1,2;3,4

LIA = �	k1k2k3k4/4� ,

W1,2,3;4,5,6
LIA = 9	k1k2k3k4k5k6/32�� . �7b�

Here, kef is a mean value of wave vectors in the game and all
functions F are of the order of unity; they depend of the
ratios of involved kj to kef.

It is well known that four-wave dynamics in the one-
dimensional case with dispersion laws �k

BSE or �k
LIA is absent

because the conservation laws of energy and momentum al-
low only trivial processes with k1=k3, k2=k4, or k1=k4, k2
=k3. However, nontrivial six-wave scattering processes of
3→3 type are allowed. For weakly interacting waves, this
dynamics can be described in terms of correlation functions
��a�k , t��2�=L−1n�k , t�, with the help of a classical six-wave
kinetic equation,12 shown below for the continuous limit L
→� and nj =n�kj , t�:

�nk

�t
=

�

12

 �W̃k,1,2;3,4,5�2�N3,4,5;k,1,2 − Nk,1,2;3,4,5����k + �1

+ �2 − �3 − �4 − �5���k + k1 + k2 − k3 − k4 − k5�

�dk1dk2 ¯ dk5,

N1,2,3;4,5,6 = n1n2n3�n4n5 + n4n6 + n5n6� . �8�

Here, W̃ is the full interaction amplitude that includes the
bare six-wave amplitude W and 72 contributions of the sec-
ond order in the four-wave amplitudes of the order of
Tk1,23

2 /�k. Notably, LIA has infinitely many integrals of mo-
tion due to its complete integrability. These integrals totally
preserve the system from dynamical evolution: �n�k , t� /�t
=0 for any n�k� distribution. With six-wave kinetic Eq. �8�,
this is possible only if W̃k,1,2;3,4,5

LIA =0 on the resonant manifold
k+k1+k2=k3+k4+k5 and �k+�1+�2=�3+�4+�5. This

means that the leading contribution to W̃k,1,2;3,4,5
BSE , propor-

tional to 	 �that coincides with W̃k,1,2;3,4,5
LIA �, also vanishes due

to cancellations of the leading contribution to Wk,1,2;3,4,5
BSE with

that originating from the perturbative terms. Remaining

terms in W̃k,1,2;3,4,5
BSE can be presented as follows

W̃k,1,2;3,4,5
BSE = k1k2k3k4k5k6�1,2,3;4,5,6/4�� , �9�

where some dimensionless function �1,2,3;4,5,6 is of the order
of unity and depends only on mutual ratios of k vectors
k1¯k6. This estimate differs from Eq. �7a� for Wk,1,2;3,4,5

BSE by
the absence of the large factor 	.

The kinetic equation �8� written for a single vortex fila-
ment has a stationary solution12 with a constant energy den-
sity �per unit length� flux �. We reformulate this “KS-04”
spectrum to the 3D vortex tangle system in terms of the rate
of energy density �per unit mass� in the 3D space, �=� /��2

�� is the fluid density�:

nk � ��2��1/5�2/5�k�−17/5 KS-04 spectrum. �10�

It should be mentioned, though, that the theory of the
cascade energy spectrum �KS-04� was derived with an as-
sumption that vortex lines in the tangle are not rectilinear
and noninteracting. In the present work, having in mind that
reconnections are dominated by the mean intervortex dis-
tance, we silently assumed that the interactions and nonrec-
tilinearity of vortex lines become unimportant at small
scales.

III. WARM CASCADES IN HYDRODYNAMIC
TURBULENCE

The energy density per unit mass for Kelvin waves of
small amplitude is

E = L
 �knkdk

2�
=
 Ekdk

2�
,

where L��−2 is the vortex line density per unit volume and
Ek is the one-dimensional energy density in k space. Together
with Eq. �10�, this gives

Ek � 	��7�/�8�1/5�k�−7/5. �11�

Note that the parameters � and � in Eq. �11� are mutually
dependent. Their relation follows from the expression for the
mean vorticity in the system of quantum filaments, �����
��L���−2, where ����� is dominated by the classical-
quantum crossover scale and its estimate is usually based on
the K41 spectrum,

Ek
K41 � �2/3�k�−5/3, �12�

which gives

�����2 � 
1/�

k2Ek
K41dk � �2/3�−4/3 or � � �3/�4.

However, this estimate is rather unprecise because the K41
spectrum cannot be matched to the Kelvin wave spectrum
�Eq. �11�� at the crossover scale and, as is explained below,
there exists a bottleneck. However, since the bottleneck is on
the classical side of the spectral range, and the mean vorticity
is still dominated by the crossover scale, one can find the
correct relation between � and � based on Eq. �11� instead of
K41. This gives

�����2 � �1/�3Ek�k=1/� � 	��7�/�16�1/5 or � � �3/	5�4.

This estimate is different from the standard one based on
K41 by a large factor of 	5.

Now, from Eqs. �11� and �12�, one can find the ratio of
quantum and classical �K41� spectra of turbulence at the
crossover scale k�1/�:

E1/�/E1/�
K41 � 	10/3 
 1. �13�

This ratio shows that quantum turbulence of Kelvin waves
requires much higher level of energy �by factor 	10/3�, in
order to provide the same rate of the energy flux �and the
same rate of the energy dissipation�, than in the hydrody-
namic turbulence of classical fluid. The main reason for that
is the “rigidity” of the vortex filaments, which is reflected by
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factor 	k in Eq. �7a� in the Kelvin wave frequency. This
contributes a factor of 	8/3 into the ratio �13�. The remaining
factor of 	2/3 originates from the fact that any one-
dimensional system of interacting Kelvin waves described by
the Bio-Savart equation is close to the fully integrable LIA
system, in which the dynamics of wave amplitudes is absent.
Thus, in order to have the same value of the energy flux and
continuity of the spectrum at the crossover scale, there must
be a bottleneck pileup of the classical spectrum near this
scale by a factor of 	10/3, and this will be described by a
“warm cascade” solution in what follows.

As we explained, the energy flux carried by classical hy-
drodynamic turbulence with K41 spectrum �12� cannot fully
propagate through the crossover region. Therefore, hydrody-
namic motions with larger scales �smaller wave-vectors� will
increase their energy up to the level E1/�, required for Kelvin
waves to maintain the same energy flux. As a result, for k
�1/�, the spectrum of hydrodynamic turbulence, Ek

HD, will
not have the K41 scale-invariant form Ek

K41 given by Eq.
�12�. To get a qualitative understanding of the resulting
bottleneck, we will use the so-called warm cascade solutions
found in Ref. 14. These solutions follow from the Leith-67
differential model for the energy flux of hydrodynamical tur-
bulence,

�k = −
1

8
��k�13Fk

dFk

dk
, Fk =

Ek
HD

k2 , �14�

where Fk is the three-dimensional spectrum of turbulence.
Generic spectrum with a constant energy flux is found as the
solution to the equation �k=�:

Fk = � 24�

11�k�11/2 + � T

��
�3/2�2/3

. �15�

The large k range describes a thermalized part of the spec-
trum with equipartition of energy characterized by an effec-
tive temperature T, namely, T /2 of energy per degree of
freedom; thus, Fk=T /�� and Ek=Tk2 /��. At low k, Eq. �15�
coincides with K41 spectrum �Eq. �12��.

This warm cascade solution describes the reflection of
K41 cascade and the stagnation of the spectrum near the
bottleneck scale, which, in our case, corresponds to the
classical-quantum crossover scale. To obtain the spectrum in
the classical range of scales, it remains now to find T by
matching Eq. �15� with the value of the Kelvin wave spec-
trum at the crossover scale Ek��2 /�. This gives T /���2�
���11/	5��1/4.

Obviously, the transition between the classical and quan-
tum regimes is not sharp and, in reality, we should expect a
gradual increase of the role of the self-induced wavelike mo-
tions of individual vortex lines with respect to the collective
classical-eddy type of motions of the vortex bundles. Thus,
the high-wave-number part of the thermalized range is likely
to be wave rather than eddy dominated. However, the energy
spectrum for this part would still be of the same k2 form
corresponding to the thermal energy equipartition. This pic-
ture relies on the assumption �justified below� that the self-
induced wave motions have small amplitudes and, therefore,
do not lead to reconnections.

The resulting spectrum including both the classical, the
quantum, and the crossover parts is shown in Fig. 1 as a
log-log plot. It is important to note that at k�1/�, in addi-
tion to the cascading energy associated with Kelvin waves,
there is also an energy associated with the tangle of vortex
filaments �shown in Fig. 1 by a green dash-dotted line�. The
energy spectrum of this part, ��k�−1, is simply a spectrum
associated with a singular distribution of vorticity along one-
dimensional curves in the 3D space10 and does not support a
downscale cascade of energy. The cascading and noncascad-
ing parts have similar energies at the crossover scale; that is,
the wave period and the amplitude are of the order of the
characteristic time and size of evolving background fila-
ments. In other words, the scales of the waves and of the
vortex “carcass” are not separated enough to treat them as
independent components. This justifies the matching of the
classical spectrum at the crossover scale with the Kelvin
wave part alone ignoring the “carcass,” which is valid up to
an order-one factor. This also justifies the way of connecting
the carcass spacing � to the cascade rate �.

IV. WEAKNESS OF TURBULENCE
AT AND BELOW SCALE �

In principle, turbulent fragmentation cascade into decreas-
ingly small vortex loops can be an alternative to Kelvin
waves as a mechanism of the energy transfer below scale �.
Dimensionally, one can obtain spectrum ��k�−1, which corre-
sponds to such a cascade16,22 �and which accidentally coin-
cides with the noncascading carcass spectrum discussed
above�. The probability of such small-scale reconnections
depends on statistics of vortex orientations and can be esti-
mated only in the simplest case of totally unpolarized vortex
tangle by adopting a model in which every vortex line con-
sists of short correlated pieces, see, e.g., Ref. 19. This model
is relevant for turbulence produced by a thermal counterflow,
but not to the case of polarized turbulence produced by clas-
sical means. Definitely, in the case when, at the microscopic
level, the vortex lines are preferably parallel �presumably
this is the case for superfluid turbulence in the rotating
tank5–7�, the reconnection scenario16,22 is irrelevant, as we
assumed in our approach.

This picture is supported by an estimation of the nonlin-
earity parameter �k through comparison of the nonlinear fre-
quency shift ��k with the frequency itself:

�k =
��k

�k
�

Tk,k;k,k
BSE nkk

�k
BSE �

1

	�k��2/5 , �16�

which is obtained using Eqs. �7a� and �10� and our estimate
���3 /	5�4. Now we see that at the crossover scale the non-
linearity is small:

�1/� � 1/	 � 1/ln��/a0� � 1.

Correspondingly, characteristic values of the bending angle
� associated with Kelvin waves are also small,

� � �� � 1/�	 � 1. �17�

Hence, the KS-04 weakly nonlinear spectrum should domi-
nate the Svistunov-95 reconnection spectrum.16 Indeed, the
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mean wave amplitude at scale � is ���, i.e., too small for
the adjacent vortex lines to “touch” and reconnect. This
proves the self-consistency of the picture of the cascade car-
ried out by interacting Kelvin waves without reconnections,
but we emphasize that this picture assumes polarization of
the vortex system on which Kelvin waves propagate.

Similarly, in the thermalized region of scales, the mean
bending angle can be estimated as ������k��3 /�	�1.
Thus, the self-induced vortex line motions gradually arising
from the eddylike collective motions in the thermalized part
take the form of weakly nonlinear Kelvin waves. The non-
linearity of Kelvin waves grows with k in the thermalized
part, reaching its peak at the crossover scale and decreasing
in the Kelvin cascade range.

V. SUMMARY AND DISCUSSION

In this paper, we suggested the following route for the
development of the energy cascade: K41→ “warm up”
→KS-04 spectrum with a very pronounced bottleneck effect.
This scenario is relevant for polarized vortex systems result-
ing from forcings of a classical type, e.g., a towed grid or
rotation, but not relevant to unpolarized vortex tangles pro-
duced by thermal counterflows. In our arguments, we relied
on the fact that polarization suppressed the reconnection-
fragmentation cascade. Classically produced K41 turbulence
is indeed polarized. However, its polarization is not perfect
and, at this time, we cannot exclude that in some specific
cases the reconnection dynamics can suppress the bottleneck
accumulation of energy.

In this paper, we predicted that the bottleneck at the
classical-quantum crossover scale amplifies the spectrum at
this scale by a large factor of 	10/3 with respect to K41.
Correspondingly, the corrected estimate for the crossover
scale which takes this bottleneck into account is �
���3 /	5��1/4, which is 	5/4 times smaller than the standard
estimate based on K41. Yet another way to reformulate the
same thing would be to say that the effective viscosity �� is
reduced by a large factor of 	5, i.e.,

�� � �/	5 �18�

�see, e.g., Ref. 3 for definition of �� and explanation of its
meaning�.

A comment is due about the locality of the transition be-
tween the classical turbulence and the Kelvin wave cascade.
Due to a sharp kinklike nature of the vortex reconnections
generating Kelvin waves �see Fig. 2�, one might think that
the energy is injected into the Kelvin wave cascade over a
wide range of wave numbers �associated with a Fourier
analysis of the kink� and conclude that the energy spectrum
in the quantum region should differ from k−7/5. However, as
was shown in Ref. 15, the Fourier transform of the kink
decays with k fast enough for the direct cascade scaling to
dominate. In other words, the reconnection forcing appears
to be more or less equivalent to a low-frequency forcing at
the intervortex scale �.

To describe the shape of the bottleneck spectrum, we used
the warm cascade solution previously obtained in Ref. 14
based on the Leith-67 differential model Eq. �14�, as it is the

simplest model which can provide a clear qualitative under-
standing of the bottleneck phenomenon. Clearly, the differ-
ential model Eq. �14� exaggerates the locality of the interac-
tions of scales in real Navier-Stokes turbulence, where the
main contribution to evolution of Ek

HD originates from a
wider range of comparable scales q�k. Some authors claim
that extended interaction triads with q between k /A and Ak
�with A�10� are most important.23 If so, the transient region
between K41 and the spectra in thermodynamic equilibrium
can be wider than the one predicted by the differential ap-
proximation Eq. �14�. To account for this effect, one can use
a more sophisticated turbulence closure based on an integral
rather than a differential equation, e.g., one of the traditional
closures such as the direct interaction approximation or
eddy-damped quasinormal Markovian �EDQNM�, as was
done in Ref. 24, or even simpler closure, suggested in Ap-
pendix A.

In this paper, we did not consider the effects of the mutual
friction between the normal and superfluid components,
thereby restricting our consideration to low temperatures
�e.g., below 1 K for 4He�. At higher temperatures, the dissi-
pation of energy by the mutual friction can exceed the energy
transfer to Kelvin waves, which would make our analysis
and conclusions inapplicable. This seems to be the case, for
example, in experiments described in Ref. 11.

At lower temperatures, there is a clear lack of experiments
on turbulence generated by classical means. In this respect,
one could mention the 3He experiment on turbulence gener-
ated by a vibrating wire at Lancaster,4 the authors of which
found the value of the effective viscosity ��=0.2�, which
appears to be much greater than our prediction �18�. On the
other hand, to obtain this value, the authors used an estimate
for the integral �energy containing� scale to be equal to the
thickness of the turbulent region, d=1.5 mm, which in our
opinion may not be the case for the oscillating grid setup.
Lacking direct measurements of d, we could get guidance
from the oscillating grid experiments in classical fluids, see,
e.g., Ref. 27, where the following estimate for the integral
scale is given:

d = 0.25�S/M�1/2z ,

where M is the mesh size, S is the amplitude of oscillations,
and z is the distance from the grid. Taking the Lancaster
parameters, M =50 �m, S=1 �m, and z=1.5 mm, we get d
=50 �m. Estimating �� with this value of the integral scale
would give ���2�10−4�, which would be consistent with
the small 	−5 coefficient in Eq. �18�. However, it is not pos-
sible to be more conclusive, one way or another, without
more direct measurements of the turbulent parameters in this
case.

A lucky exception appears to be a different 3He experi-
ment on rotation generated turbulence, in which the bottle-
neck phenomenon appears to be important in understanding
the observed propagation speed of the turbulent-laminar in-
terface, see Ref. 25 for detailed explanations.

In the final stages of modifying our paper, our attention
was drawn to a different preprint28 where an alternative pic-
ture of the crossover turbulence was presented with bottle-
neck being prevented by reconnections. The authors argued
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that the self-induced part of the vortex line velocity becomes
larger than the classical collectively produced velocity in the
vortex bundle already at the scale r0�	1/2l0
 l0. From this,
they concluded that the polarized vortex bundles move ran-
domly with respect to each other, which leads to their ran-
dom reconnections. In this respect, we would like to reem-
phasize our view that the fast self-induced motions take the
form of rapidly oscillating Kelvin waves rather than of a
chaotic motion of vortex bundles. Moreover, as expressed in
our estimate �17�, these Kelvin waves must have very small
bending angles �1/	1/2 or less� in order for the six-wave
Kelvin cascade to carry the same flux as in the K41 �large-
scale� part of the spectrum. Such small bending angles are
insufficient for the neighboring lines within a particular
bundle to approach each other and to reconnect neither in the
thermalized nor in the cascade range of scales. Thus, recon-
nections are limited to rather small volumes in between col-
liding large-scale bundles.

On the other hand, as we have already said in this paper,
polarization of K41 turbulence is not perfect and we may
expect reconnections to play some role which would lead to
certain modifications of the bottleneck phenomenon de-
scribed in this paper. Relative role of the reconnections ver-
sus the Kelvin wave cascades is also likely to depend on the
particular way of exciting turbulence. In particular, we may
expect further reinforcement of the polarization, and there-
fore, stronger suppression of reconnections, in rotating sys-
tems and in systems with a strongly sheared mean flow.
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APPENDIX A: SIMPLE TURBULENT CLOSURE

Here, we propose a different model which could be
viewed as the simplest �minimal� integral closure to be used
in the future for an improved description of the transitional
bottleneck region. The model comprises in writing the colli-
sion term St�Fk	 in energy spectrum balance Fk / t=St�Fk	 as
follows:

St�Fk	 � 

−�

� q2dqp2dp��k + q + p�
2�k2�k2 + q2 + p2�

k�kFqFp + qFkFp

+ pFqFk�/��k + �q + �p� , �A1�

where k, q, and p are one-dimensional vectors varying in the
interval �−� , +��, and �k=��k�5Fk represents eddy-turnover
frequency. The model �A1� differs from EDQNM by replace-

ment of d3qd3p�3�k+q+p� with three-dimensional vectors k,
q, and p by q2dqp2dp��k+q+ p� / �k2+q2+ p2� with one-
dimensional vectors, by a simpler form of �k, and by one-
dimensional version of the interaction amplitude �Vkqp

���⇒k�.
The model �A1� satisfies all general closure requirements:

it conserves energy, �k2St�Fk	dk=0 for any Fk, and St�Fk	
=0 on the thermodynamic equilibrium spectrum Fk=const
and on the cascade spectrum Fk� �k�−11/3. Importantly, the
integrand in Eq. �A1� has the correct asymptotical behavior
at the limits of small and large q /k as in the sweeping-free
Belinicher-L’vov representation, see Ref. 26. This means that
our model adequately reflects contributions of the extended
interaction triads and thus should be useful in the future for a
quantitative description of the transient region between tur-
bulent spectra with thermodynamic and energy-flux equilib-
ria.

APPENDIX B: VELOCITY CIRCULATION
AND POLARIZATION IN TURBULENCE

In this appendix, we will calculate the velocity circulation
� over a circular contour of radius R in classical turbulence
with a power-law spectrum. Let the second order velocity
correlation function �3D spectrum� in the k space for isotro-
pic homogeneous turbulence be

Fk = CF
vT

2k*
x−3

kx , �B1�

where CF=2�2�x−3�, vT is the rms velocity in turbulence,
and k* is a wave number of truncation from above for x
�3 �e.g., for the thermodynamic equilibrium with x=0� and
from below for x�3 �e.g., for K41 turbulence with x
=11/3�. Such a truncation is necessary for vT to be finite,
and we will see below that the x=3 boundary also separates
different types of the scaling behavior of the velocity circu-
lation.

Consider the circulation

� = 

R

�nd2r , �B2�

where �=��v is vorticity, and the integral is taken around
an arbitrary circle of radius R. Then

��2� = 

R

 ��1,n�2,n�d2r1d2r2. �B3�

Due to isotropy of the turbulence, we may approximate
��1,n�2,n�= 1

3 ��1 ·�2�. With r12=r1−r2 and ��k1
·�k2

�
=2k1

2�2��3��k1+k2�Fk1
, we have

��1 · �2� =
 
 d3k1d3k2

�2��6 ei�k·r1+k·r2���k1
· �k2

�

= 2
 k2Fke
ik·r12

d3k

�2��3 =
CF

�2

vT
2k*

x−3

r12



0

� sin�kr12�
kx−3 dk .

�B4�

When 3�x�5, this integral converges and we have
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��1 · �2� = 2�x − 3�
vT

2

r12
2 �k*r12�x−3�− G�4 − x�sin

�x

2
� ,

�B5�

where G�x� is the gamma function. Substituting this expres-
sion into Eq. �B3� and integrating, we have

��2� = Cx
vT

2

k*
2 �k*R�x−1, �B6�

where Cx is an order-one constant �whose analytical depen-
dence on index x is very complicated�.

For x�3, the integral in Eq. �B4� diverges at the upper
limit and, therefore, has to be truncated at the maximum
wave number, which, in this case, is k*. We have

��1 · �2� =
CF

�2

vT
2�k*r12�x−3

r12
2 


0

k*r12 sin y

yx−3 dy . �B7�

The integral in this expression can be found in terms of the
special functions whose asymptotical behavior can be readily
obtained. This way, one can show that the correlator ��1 ·�2�
decays in r12 sufficiently fast, so that for k*R
1, one can
pass in the integral �B3� to the symmetric variables r+

= 1
2 �r1+r2� and r12=r1−r2, use the polar coordinates, and

replace the upper integration limit for r12 with infinity,

��2� =
2�2R2

3



0

�

��1 · �2�r12dr12.

Substituting ��1 ·�2� from Eq. �B7� and integrating, we have

��2� =
4�4

3
vT

2R2. �B8�

Interestingly, this expression is independent of both the spec-
trum exponent x and of the cutoff k*. This fact has a simple
physical interpretation. Suppose that the correlation length of
vorticity field in turbulence �� is short so that ���R. Then
the circle of radius R embraces N=R2 /��

2 random and effec-
tively independent vortex tubes, each having radius ��� and
circulation �l�vT��. Because of the statistical independence
of these tubes, ��2� can be found using the central limit
theorem, similar to the way we did in the main text for the
set of random quantized vortex lines. We have

��2� � �l
2N = vT

2R2,

which coincides, up to an order-one numerical factor, with
expression �B8�. Note that dependence on �� has dropped
out, which corresponds to independence of expression �B8�
of x and k*.

For x�5, the integral in �B4� diverges at the lower limit
and, therefore, has to be truncated at the minimum wave
number, which, in this case, is again k*. We have

��1 · �2� =
CF

�2

vT
2k*

2

�x − 5�
. �B9�

As we see, this correlator is independent of the distance r12,
which simply means that the correlation length in this case is
of the order of the maximal length scale 1 /k*. The integra-
tion in Eq. �B3� in this case reduces to the multiplication by
the square of the circle area, i.e.,

��2� =
1

3

CF

�2

vT
2k*

2

�x − 5�
��R2�2 =

2�2�x − 3�
3�x − 5�

vT
2k*

2R4.

�B10�

The R4 scaling here coincides with the one obtained in the
main text for a bundle of perfectly aligned �polarized� vortex
lines. This is not surprising since the vorticity correlation
length in this case �1/k*, which is much greater than the
contour size R. Another interesting effect to note is that ��2�
diverges for x→5.

Let us now summarize all the cases. We have

x � 3�e.g., thermodynamic�:��2� =
4�4

3
vT

2R2,

3 � x � 5�e.g., K41�:��2� = Cx
vT

2

k*
2 �k*R�x−1,

x � 5�e.g., smooth field�:��2� =
2�2�x − 3�

3�x − 5�
vT

2k*
2R4.

For polarization P �see definition in the main text�, we have
respectively

P = �0, x � 3

�x − 3�/2, x � �3,5�
1, x � 5.

� �B11�

So, the thermal equilibrium state �x=0� is not polarized at
all, P=0, while Kolmogorov turbulence �x=11/3� is par-
tially polarized, P=1/3.
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