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We obtain a canonical form of a quadratic Hamiltonian for linear waves in a weakly
inhomogeneous medium. This is achieved by using the Wentzel–Kramers–Brillouin
representation of wave packets. The canonical form of the Hamiltonian is obtained
via the series of canonical Bogolyubov-type and near-identical transformations.
Various examples of the application illustrating the main features of our approach
are presented. The knowledge of the Hamiltonian structure for linear wave systems
provides a basis for developing a theory of weakly nonlinear random waves in
inhomogeneous media generalizing the theory of homogeneous wave
turbulence. © 2009 American Institute of Physics. �DOI: 10.1063/1.3054275�

I. INTRODUCTION

In order to analyze the behavior of a general nonlinear system, the first necessary step is to
analyze the linear system. The classical examples are finite-dimensional Hamiltonian systems with
coupled degrees of freedom. The dynamical behavior of such systems for small excitations is
determined by the form of the quadratic part of their Hamiltonians, which correspond to the linear
dynamics. A detailed classification of the canonical normal forms for such Hamiltonians was given
by Galin, and it was summarized in one of the appendices in the book of Arnold.1 Another class
of examples of nonlinear systems, which behavior crucially depends on the linear part, is weakly
interacting dispersive waves in continuous media that are studied in wave turbulence �WT�. These
systems often have analogs among discrete systems, e.g., a chain of coupled oscillators, and
correspondingly their quadratic Hamiltonians have analogs among Galin–Arnold canonical forms.
Examples where WT has important applications are surface gravity waves,2 �-plane turbulence in
oceans and atmospheres,3,4 internal waves in the ocean,5 weak magnetohydrodynamics �MHD�
turbulence,6 Bose–Einstein condensate �BEC�,7,8 and plasmas.9 Traditionally, WT theory is applied
to homogeneous systems. The quadratic Hamiltonian describing linear interactions in such homo-
geneous systems is given by10

H2 =� �Ak�ak�2dk +
1

2
�Bkaka−k + Bk

�ak
�a−k

� ��dk , �1�

where ak is a complex-valued field and the bold face denotes a d dimensional vector in Rd. The
linear canonical transformation to the new variables bk that was first used by Bogolyubov in 1958
for the system of fermions brings this Hamiltonian to its normal form,
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H2 =� �k�bk�2dk , �2�

where �k is a linear dispersive relationship. The formalism of WT significantly enhanced our
understanding of spectral energy transfer in ocean, atmosphere, plasma, and other system of
nonlinear waves.10 WT deals with weakly nonlinear waves with quasirandom phases. Using WT,
one can derive a kinetic equation for the wave spectrum, which evolves due to resonant wave
interactions.

In order for the resonant energy transfers to occur, certain resonance conditions need to be
satisfied. In particular, for the systems dominated by three wave interactions, such as internal
waves in the ocean5 or capillary waves,11 these conditions are given by

�k = �k1
+ �k2

,

�3�
k = k1 + k2.

Similar four-wave resonant conditions should be satisfied for the resonant interactions in the
four-wave systems.

Often, WT is not spatially homogeneous and its statistical properties vary in space due to a
trapping potential, inhomogeneous background density, or an inhomogeneous velocity field. Ex-
amples of such systems are the BEC in the presence of a trapping potential8 and an interaction of
the long “aged” gravity waves with a swell.12 In general, the idea is to consider a small amplitude
high frequency perturbation of a large-scale solution of the dynamic equation �e.g., the conden-
sate�. The effects of this coordinate dependent background solution can most easily be understood
using a wave-packet formalism. This formalism was first used to approximate the Schrödinger’s
wave function by a quasimonochromatic wave by Wentzel,13 Kramers,14 and Brillouin.15 Their
initials give the term WKB approximation. The WKB approximation is applicable if the wave-
packet wavelength l is much shorter than the characteristic wavelength L of a large-scale solution,

� =
l

L
� 1.

The essence of WKB approach is that the wave numbers, characterizing the wavepacket, are the
functions of coordinates. This is due to the distortion of the wave packets by the media, leading to
a spatial wavenumber dependence. Such spatial wave number dependence may have a dramatic
effect on nonlinear resonant wave interactions. Indeed, the resonant conditions �3� may now be
satisfied only in a finite part of a domain or, for a particular wave packet, only for a finite time.

The goal of this paper is to use the spatially dependent WKB wave packets to find a canonical
form for the quadratic Hamiltonian for the inhomogeneous systems. This problem can be consid-
ered as an extension of certain �oscillatory� members from the Galin–Arnold classification of
quadratic forms onto the infinite-dimensional and continuous space. The physical motivation for
such a formulation is that, since the Hamiltonian description is natural for WT in homogeneous
systems, it lays down a necessary framework for generalization onto the inhomogeneous media.

To begin, we write down the general Hamiltonian for the system of linear waves propagating
in the inhomogeneous background. We will show in Sec. II that such general Hamiltonian for the
variable aq is given by the following quadratic form:

H =� �A�q,q1�aqaq1

� +
1

2
�B�q,q1�aqa−q1

+ B��q,q1�aq
�a−q1

� ��dqdq1. �4�

The main result of the present paper is that this general Hamiltonian �4� can be transformed to the
following canonical form:
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H =� ckx��kx − x · �x�kx + i	�kx, ·
�ckx
� dkdx . �5�

Here �kx and ckx are the new position-dependent dispersion relationship and normal field variable,
correspondingly, and a Poisson bracket is defined by

	f ,g
 = �kf · �xg − �kg · �xf .

This novel canonical Hamiltonian is a generalization of the Hamiltonian �2� for the inhomo-
geneous systems. The approach used in the paper can be viewed as a generalization of the
Bogolyubov transformation, which diagonalizes Hamiltonian �1� to the form �2� via canonical
transformation. Similarly, Hamiltonian �4� can be transformed into the canonical form �5�, how-
ever, now using near-canonical transformations. In the Hamiltonian �5�, the second and the third
term in the brackets correspond to the higher order corrections to the dispersion relation due to the
inhomogeneity. We prove that the Hamiltonian �4� can be transformed into a canonical form �5� in
the case when the heterogeneity is weak. Formally, the requirement of weak inhomogeneity means
that the coefficients A�q ,q1� and B�q ,q1� are strongly peaked at q−q1=0, i.e., A�q ,q1�=0 for
�q−q1��� for some small �. Based on this requirement, we derive below the renormalized dis-
persion relationship and the transformation formulas from ak to ckx accurate up to the first order
in �. It turns out that just Bogolyubov’s transformation is not enough in this case. The phase
coordinate systems should also be perturbed by a near-identity transformation in addition to the
Bogolyubov’s rotation. Then, the Hamiltonian becomes diagonal up to the first order in �.

From the novel canonical form of the Hamiltonian given by Eq. �5�, the traditional radiative
action balance equation can easily be obtained,

�nkx

�t
+ �k�kx�xnkx − �x�kx�knkx = 0,

or, shorter,

�nkx

�t
+ 	�kx,nkx
 = 0, �6�

where nkx denotes the ensemble average of the squared amplitude of the wave, i.e., nkx
���ckx�2
. Equation �6� is now a standard equation which is used in statistical modeling of wave
systems.16 It is a wave analog of the Liouville’s theorem or the continuity equations for distribu-
tion function of statistical mechanics.17,18 In wave systems there are wave quasiparticles instead of
particles, following different rays instead of individual particle trajectories. Wave action distribu-
tion function moves in the multidimensional wavenumber-coordinate phase space.

The paper is organized as follows. In Sec. II, we give simple and instructive examples that
motivate the study of inhomogeneous WKB systems. In Sec. III, we introduce the window trans-
forms and other formulas that will be extensively used later. In Sec. IV, we discuss the case of a
nearly diagonal Hamiltonian. We show how it can be transformed to a canonical form �2� and
provide a couple of representative examples. In Sec. V, we study the Hamiltonian in a general
form �4�. We present the series of near-canonical and near-identical transformations that bring the
Hamiltonian �4� to the form �5�. We also demonstrate the application of this approach to the
nonlinear Schrödinger equation with the condensate.

II. MOTIVATION

In this section, we motivate our study of inhomogeneous systems by considering an example
of the interaction of short waves on the background of a long wave. We describe the cases of both
three-wave and four-wave Hamiltonian systems.

Three-wave case. The quadratic Hamiltonian of a three-wave system with small-scale pertur-
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bations on the background of the large-scale excitations is given by Eq. �4�. In order to show that,
we start with a standard three-wave Hamiltonian,10

H3 =� �k�ak�2dk +
1

2
� �Vlm

k ak
�alam + c.c.��lm

k dkdldm , �7�

where V is an interaction coefficient. Then, the equations of motion for the variable ak assume a
standard form,

iȧk =
�H3

�ak
� = �kak +� �1

2
Vlm

k alam�lm
k + �Vkm

l ��alam
� �km

l �dldm . �8�

Suppose that a large-scale solution of �8� is given by Ck. We consider a perturbed solution ak
=Ck+ck, where ck is a small-scale perturbation of Ck. Equation of motion for ck attains the
following form:

iċk = �kck +� �1

2
Vlm

k �Clcm + Cmcl + clcm��lm
k + �Vkm

l ���Clcm
� + Cm

� cl + clcm
� ��km

l �dldm .

Now, we use the fact that Ck is a known exact solution for Eq. �8� to obtain

iċk =� A�k,l�cldl +
1

2
� B�k,l�c−l

� dl +� �1

2
Vlm

k clcm�lm
k + �Vkm

l ��clcm
� �km

l �dldm , �9�

where

A�k,l� = �l�l
k + Vl,k−l

k Ck−l + �Vk,l−k
l ��Cl−k

� ,

�10�
B�k,l� = 2Vk,−l

k−l Ck−l.

Equation �9� corresponds to the following Hamiltonian:

H =� A�k,l�clck
�dldk +

1

2
� �B�k,l�c−l

� ck
� + c.c.�dkdl +

1

2
� �Vlm

k ck
�clcm�lm

k + c.c.�dkdldm .

�11�

This appears to be a standard form of the Hamiltonian for the wave system dominated by three
wave interactions in the inhomogeneous media. Quadratic in ck part of this Hamiltonian is given
by �4�, while cubic part of this Hamiltonian is a standard three-wave interaction Hamiltonian.

Four-wave case. Four-wave systems are similar to three-wave systems when small-scale
perturbations on the background of the large-scale excitations are considered. Indeed, we show
below that the quadratic part of a four-wave Hamiltonian of small-scale perturbation has the form
�4�. We start from a standard four-wave Hamiltonian,10

H4 =� �k�ak�2dk +
1

2
� Tms

kl ak
�al

�amas�ms
kl dkdldmds , �12�

where T is an interaction coefficient. The corresponding equation of motion takes the form

iȧk = �kak +� Tms
kl al

�amas�ms
kl dldmds . �13�

We then consider a perturbed solution ak=Ck+ck, where ck is a small-scale perturbation. Assum-
ing that Ck is an exact solution to the equation of motion with Hamiltonian �13�, we obtain the
following equation of motion for ck:
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iċk = �kck +� Tms
kl �2Cl

�Cmcs + cl
�CmCs��ms

kl dldmds +� Tms
kl �Cl

�cmcs + 2cl
�cmCs��ms

kl dldmds

+� Tms
kl cl

�cmcs�ms
kl dldmds .

Since Ck is a known large-scale solution, we obtain

iċk =� A�k,s�csds +
1

2
� B�k,s�c−s

� ds +� �1

2
Wlm

k clcm + �Wkm
l ��clcm

� �dldm

+� Tms
kl cl

�cmcs�ms
kl dldmds , �14�

where we defined the kernels A�k ,s� and B�k ,s� as

A�k,s� = �s�s
k + 2� Tms

kl Cl
�Cm�ms

kl dldm ,

�15�

B�k,s� = 2� Tm,l
k,−sCmCl�m,l

k,−sdldm ,

and

Wlm
k = 2� Tml

ks Cs
��lm

ks ds .

The linear part of Eq. �14� has the same form as the linear part of the corresponding equation
obtained for the three-wave case �9�. Thus, this linear part corresponds to the same first two terms
as in Hamiltonian �11�. Note also similarity of the quadratic terms in �9� and �14�. Note that �14�
corresponds to the following Hamiltonian:

H =� A�k,l�clck
�dldk +

1

2
� �B�k,l�c−l

� ck
� + c.c.�dkdl +

1

2
� �Wlm

k ck
�clcm + c.c.�dkdldm

+
1

2
� Tms

kl ck
�cl

�cmcs�ms
kl dkdldmds . �16�

This appears to be a standard Hamiltonian for the wave system with four-wave interactions in the
presence of spatial inhomogeneity. Indeed, the quadratic part �first line� of this Hamiltonian is the
Hamiltonian �4�. The cubic term is the three-wave interactions with the background large-scale
wave �i.e., four-wave interaction where the role of the fourth wave is assumed by the background
wave�. Notice that unlike traditional three-wave interactions in a homogeneous environment,
momentum is not conserved by this term. This is the effect of breaking of spatial symmetry by an
inhomogeneous background. Lastly, the quartic term �third line� is the standard four-wave inter-
action Hamiltonian. We show in this paper that the quadratic part of this Hamiltonian may be
reduced to the novel canonical Hamiltonian for spatially inhomogeneous systems �5�.

In this section we have demonstrated that if the general wave system is dominated by three-
wave or four-wave interactions and consists of short scale waves superimposed on known large-
scale motion, its quadratic Hamiltonian is given by Eq. �4�.

III. PRELIMINARIES

In this section, we set up the stage for formulation of our results. Here, we give basic
definitions and obtain frequently used formulas.

We use the following definition of direct and inverse Fourier transforms:
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ĝ�k� =
1

�2	�d� g�x�e−ik·xdx ,

g�x� =� ĝ�k�eik·xdk .

Next, we generalize the Fourier transform to spatially inhomogeneous systems. In order to do that,
we use a window transform of g�x�,


�g�x�� � g̃�x,k� =
1

�2	�d� f����x − x0��g�x0�e−ik·x0dx0. �17�

Here, f�x� is an arbitrary fast decaying at infinity window function. The parameter �� is defined by
the spatial scales of the inhomogeneity and the propagating wave packets in the following manner.
First, we introduce the characteristic length of inhomogeneity to be of the order 1 /�. Then, we
take the width of the window, which is of the order 1 /��, to be much smaller than the character-
istic length of inhomogeneity. On the other hand, the width of the window is chosen to be much
larger than the wavelength of the waves that propagate in the inhomogeneous medium, which is of
the order of 1. Therefore, we have

� � �� � 1. �18�

The special case when f�x�=exp�−x2� is called Gabor transform.19 Note that when �� approaches
zero, f���x� approaches the constant function with the value one. Consequently, the Gabor trans-
form becomes a Fourier transform. Therefore the Fourier transform can be seen as an averaging
over an infinitely large window.

The inverse of the window transform �17� is given by

g�x� =� g̃�x,k�eik·xdk , �19�

where we have used f�0�=1. We emphasize that Eq. �19� and all the formulas that we obtain
below can be obtained using any fast decaying at infinity window function and are independent of
the particular form of f�x� as long as it is sufficiently smooth.

Now, we present the formulas for the window transform, which will be useful later. First, we
express the window transform g̃�x ,k� in terms of the Fourier transform ĝ�k�,

g̃�x,k� =
1

����d� f̂��k − q�/���ei�q−k�·xĝ�q�dq . �20�

Next, we express the Fourier image ĝ�k� in terms of the window variable g̃�x ,k�,

ĝ�k� = � ��

�	
�d� g̃�x,k�dx . �21�

By combining Eqs. �20� and �21�, we obtain the following formula:

g̃�x,k� = � 1
�	

�d� f̂��q − k�/���ei�q−k�·xg̃�x�,q�dqdx�. �22�

After introducing notations and formulas that will be extensively used below, we proceed to the
discussion of the main results of the paper.
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IV. THE CASE OF NEARLY DIAGONAL HAMILTONIANS

A. Formulation and proof of the lemma

Let us start with Hamiltonian �4� without off-diagonal terms, so that B�q ,q1��0. This is a
typical Hamiltonian for linear waves in weakly inhomogeneous media10 expressed in terms of
Fourier amplitudes aq and aq1

� as

H =� ��q,q1�aqaq1

� dqdq1, �23�

with a Hermitian kernel ��q1 ,q�=���q ,q1�, which is strongly peaked at q−q1=0 �� has a finite
support around q�q1�. Therefore, we subsequently assume that there is a small parameter � for
which

��q1 − q� = 0, �24�

when �q−q1���. A particular choice

��q1,q� = ��q1���q − q1� ,

leads to the familiar form of the Hamiltonian �2�.
The equation of motion for ak is

iȧk =
�H

�ak
� =� �qkaqdq . �25�

Lemma: Consider the Hamiltonian �23� with ��q ,q1� being a peaked function of �q−q1� [satis-
fying �24�] and a smooth function of �q+q1�. Then there exist a near-canonical change in vari-
ables ak→ ǎkx such that in the new variables the equation of motion can be written in the
Hamiltonian form,

i
�

�t
ǎkx =

�Hf

�ǎkx
�

,

with the filtered Hamiltonian in a canonical form,

Hf =� ǎkx��kx − x · �x�kx + i	�kx, ·
�ǎkx
� dkdx , �26�

where �kx is the position-dependent frequency related to ��q ,q1� via the Wigner transform

�kx =� eim·x��k − m/2,k + m/2�dm . �27�

Proof: In order to obtain the new variables ǎkx, we first make a window transform via �17�, which
is then followed by a near-identical transformation. The idea of the proof is to use the peakness of
the kernel ��q1 ,q�. We make a Taylor expansion around the peak, and then by neglecting the
higher order terms we obtain the desired result.

We make a window transform from ak to ãkx using Eq. �20�. Differentiating Eq. �20� with
respect to time, using the Eq. �25�, and applying the inverse formula �21� yield
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i
�

�t
ãkx = � 1

���d� f̂��k − q1�/���ei�q1−k�·x�qq1
aqdqdq1

= � 1
�	

�d� f̂��k − q1�/���ei�q1−k�·x�qq1
ãqx1

dqdq1dx1. �28�

Let us change variables from �q ,q1� to �p ,m� as

q = p − m/2, �29�

q1 = p + m/2. �30�

Below it will be convenient to use

F�p,m� � ��p − m/2,p + m/2� . �31�

Next, we will approximate the right-hand side of Eq. �28� by a variation in some filtered Hamil-
tonian Hf, i.e., by �Hf /�ãkx

� . We can rewrite Eq. �28� as

i
�

�t
ãkx = � 1

�	
�d� f̂��k − p − m/2�/���ei�p+m/2−k�·xF�p,m�ap−m/2,x1

dpdmdx1. �32�

Let us make another change in variables p→p+m /2,

i
�

�t
ãkx = � 1

�	
�d� f̂��k − p − m�/���ei�p+m−k�·xF�p + m/2,m�ap,x1

dpdmdx1. �33�

In order to simplify Eq. �33�, we are going to use the fact that �qq1
and f̂�k� are peaked functions

of �q1−q� and k, respectively, and fast decaying at infinity. We also keep only first order terms in
spatial derivatives, neglecting second and higher order terms. Then, we could write

f̂��k − p − m�/��� = f̂��k − p�/��� + m · �p f̂��k − p�/��� + h.o.t. �34�

Similarly, we obtain

F�p + m/2,m� = F�k + p − k + m/2,m� = F�k,m� + �p − k + m/2� · �kF�k,m� + h.o.t.,

�35�

where h.o.t. denotes higher order terms. Now, we substitute the expansions �34� and �35� into Eq.
�32�, and after ignoring higher order terms, we obtain

i
�

�t
ãkx = � 1

�	
�d� � f̂��k − p�/��� + m · �p f̂��k − p�/����ei�p+m−k�·x

��F�k,m� + �p − k + m/2� · �kF�k,m��ãp,x1
dpdmdx1. �36�

Note that here we have an expansion with two different small parameters � and ��, which obey Eq.
�18�.

In Appendix A, we show how to simplify the right-hand side of Eq. �36�. As a result of this
simplification, we obtain

i
�

�t
ãkx = �kxãkx − x · �x�kxãkx + i�x�kx · �kãkx − i�k�kx · �xãkx + i��k · �x��kx�x · �xãkx�

+ i/2��k · �x��kxãkx + ��k · �x��kx��k · �x�ãkx. �37�

Here we have underlined the terms that have two spacial derivatives. In the spirit of WKB
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approximation these terms will later be neglected. This equation can be written in the Hamiltonian
form,

i
�

�t
ãkx =

�Hf

�ãkx
�

,

where the filtered Hamiltonian takes the form

Hf =� ���kx − x · �x�kx��ãkx�2 + ��k · �x��kxãkx
� ��k · �x�ãkx + iãkx

� ��x�kx · �kãkx

− �k�kx · �xãkx + ��k · �x��kx�x · �xãkx� + 1/2��k · �x��kxãkx��dkdx . �38�

Now, we will use the general method of the WKB approximation. We will only keep the terms,
which are of the first order in a small parameter �. In our case, the small parameter � characterizes
the rate of spatial change in the position-dependent frequency �kx and the dynamical variable ãkx.
To apply the WKB approximation to Eq. �37�, we neglect the terms that have two derivatives with
respect to x �underlined� because each spatial derivative is of the order � small. As a result, we
obtain the following equation of motion:

i
�

�t
ãkx = �kxãkx − x · �x�kxãkx + i�x�kx · �kãkx − i�k�kx · �xãkx + i/2��k · �x��kxãkx.

�39�

However, Eq. �39� becomes non-Hamiltonian. Indeed, the corresponding functional,

Hf =� ���kx − x · �x�kx��ãkx�2 + iãkx
� ��x�kx · �kãkx − �k�kx · �xãkx + 1/2��k · �x��kxãkx��dkdx ,

�40�

is not self-adjoint if ��k ·�x��kx�0. Therefore, in order to obtain canonical equations of motion,
another near-canonical change in variables needs to be performed,

ãkx�t� = skxǎkx�t� , �41�

where skx is some time-independent function to be determined below. Note that transformation
�41� is canonical if and only if

�skx�2 = 1.

Therefore, we need to find such skx that the system becomes Hamiltonian in terms of new vari-
ables ǎkx and the transformation �41� is near canonical, i.e., �skx��1. We substitute Eq. �41� into
Eq. �39� to obtain

iskx
�

�t
ǎkx = skx���kx − x · �x�kx�ǎkx + i�x�kx · �kǎkx − i�k�kx · �xǎkx�

+ ǎkx�i�x�kx · �kskx − i�k�kx · �xskx + i/2��k · �x��kxskx� .

If we find skx that satisfies the equation

�k�kx · �xskx − �x�kx · �kskx = 1
2skx��k · �x��kx, �42�

then the equation of motion in the new variables ǎkx takes the canonical form
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i
�

�t
ǎkx = ��kx − x · �x�kx�ǎkx − i�k�kx · �xǎkx + i�x�kx · �kǎkx, �43�

with the corresponding Hamiltonian �26�. In order to find a solution of Eq. �42�, we make a change
in variables,

gkx = 2 ln skx, �44�

to obtain

�k�kx · �xgkx − �x�kx · �kgkx = ��k · �x��kx. �45�

We find the solution of Eq. �45� using the method of characteristics. The characteristics
�x��� ,k���� are given by the following equations:

dx

d�
= �k�kx,

�46�
dk

d�
= − �x�kx,

where � is a parameter along the characteristics. Physically, these characteristics correspond to the
trajectories �rays� of WKB wavepackets in the �x ,k� space. The solution of Eq. �45� is given by

g�x���,k���� = �
0

�

��k · �x��kxd��.

Now, we use Eq. �44� and then Eq. �41� in order to obtain the new variable ǎkx out of the Gabor
variable ãkx. The dynamics of the new variable ǎkx is described by the filtered Hamiltonian �26�.

�

Note that for the special case ��k ·�x��kx=0, the Gabor variables ãkx provide a Hamiltonian
structure �26�. Then, in this special case, there is no need in performing the second transformation
�41�. We will see below in the examples that this observation may significantly simplify the
applications of the lemma.

To describe the statistical properties of spectral energy transfer in the systems, it is convenient
to define a position-dependent wave action as

ňkx � ��ǎkx�2
 . �47�

Using this definition, one obtains from �26� the familiar form �6� of the kinetic equation �some-
times called radiative balance equation� in a weakly inhomogeneous media, by using Eq. �43�. The
resulting equation for the time evolution of ňkx is Eq. �6� in Sec. I. This is the so-called waveaction
transport which is typical for WKB systems.

B. Relation to the Wigner transformation

One can also derive waveaction transport equation �6� directly from equation of motion �25�,
without obtaining first the Hamiltonian structure �5�. To do this, we define the Wigner waveaction
by using the Wigner transformation,

nkx
W �� eim·x�âk+ 1

2
mâ

k− 1
2

m

�

dm . �48�

Then the Wigner waveaction nkx
W obeys the same kinetic equation �6�. The proof can be found, for

example, in Ref. 20. The idea of the proof is to calculate the time evolution of waveaction nkx
W by

using definition �48� and equation of motion �25�. Then one uses transformation similar to �29�
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and �30� and expands nkx
W using the smallness of m, and finally uses integration by parts to obtain

�6�—see Ref. 20 for details.
To address the question on how waveaction nkx

W, defined through the Wigner transformation, is
related to the wave action ňkx, defined through the Gabor variables, we substitute �21� into the
definition of �48� to write

nkx
W = � ��

�	
�2d� �ǎk+m/2,x�ǎk−m/2,x�

� 
eim·xdx�dx�dm .

Taking into account that ǎk+m/2,x� and ǎk−m/2,x�
� are slow functions of x� and x�, one can neglect

this slow coordinate dependence relative to fast coordinate dependence in the exponent. This
allows to perform x� and x� integrations to obtain a delta function with respect to the m argument.
Consequently, we obtain that these two waveactions, �48� and �47� are approximately proportional
to each other,

nk,x
W 
 ňk,x.

There are several important advantages of our method. First, it allows to rigorously write the
equation of motion for the field variable ak,x in addition to the transfer equation of �6�. In addition,
our approach shows how to derive the kinetic equation �6� to a much broader class of nonlinear
systems, those described by Eq. �4� with nonzero value of B�q ,q1��0, as we show in Sec. V.
Lastly, Hamiltonian formulation helps to rigorously establish a wave turbulence theory and to take
into account nonlinear wave interactions.

C. Example: Linear Schrödinger equation

Consider a one-dimensional example of a linear Schrödinger equation with a slowly varying
potential. This equation is also referred to as linearized Gross–Pitaevsky equation. It is used to
describe a formation of the BEC. It is given by

i�̇ = − �x
2� + U�x�� . �49�

This equation can be written in a Hamiltonian form with the Hamiltonian given by

H =� ���x��2 + U�x����2�dx . �50�

In the Fourier space, Eq. �49� becomes

i
�

�t
�̂k = k2�̂k +� Û�k − k1��̂�k1�dk1, �51�

with a corresponding Hamiltonian

H =� ��k,k1��̂k�̂k1

� dkdk1,

where ��k ,k1�=k2�k1

k +U�k1−k�. Now we can apply Lemma and find that the position-dependent
dispersion becomes

�kx = k2 + U�x� ,

and the corresponding Hamiltonian in terms of Gabor variables takes the canonical form �5�,
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Hf =� �̃kx��kx − x�x�kx + i	�kx, ·
��̃kx
� dkdx . �52�

It follows from the lemma that the Gabor variables provide a canonical description of the system
�49�. Indeed, since �k�x�kx=0, we do not need to make a near-identity transformation �41� in the
lemma. Therefore, it is instructive to obtain the same result by directly applying Gabor transform
to the both sides of Eq. �49�. We have


��x
2�� = �x

2�̃kx + 2ik�x�̃kx − k2�̃kx � 2ik�x�̃kx − k2�̃kx. �53�

To obtain this equation we have neglected the higher order derivative of the Gabor variable, since
it is slowly varying in x. Next, we use the linear expansion of the potential U�x0��U�x�+ �x0

−x��xU�x� to find


�U�x��� = �U�x� − x�xU�x���̃kx + i�xU�x��k�̃kx. �54�

Combining Eq. �53� with Eq. �54�, we obtain

i
�

�t
�̃kx = �k2 + U�x� − x�xU�x���̃kx + i�xU�x��k�̃kx − 2ik�x�̃kx.

Hamiltonian that corresponds to this equation is given by Eq. �52�.

D. Example: An advection-type system

Let us consider an advection-type system. For simplicity of calculations let us restrict our
attention to a one-dimensional case, although a general dimensional case can also be considered.
An advection-type system has a Hamiltonian of the form

H = i� U�x����x��x�
��x� − ���x��x��x��dx , �55�

with the corresponding equation of motion

i�̇�x� = − i�x�U�x���x�� − iU�x��x��x� = − i�2U�x��x��x� + �xU�x���x�� . �56�

In the Fourier space, this system is described by the Hamiltonian

H =� ��k,k1��̂k�̂k1

� dkdqk1
,

with the kernel

��k,k1� = �k + k1�Û�k1 − k� . �57�

After applying lemma to Hamiltonian �55�, we obtain the following canonical form:

Hf =� �̌kx��kx − x�x�kx + i	�kx, ·
��̌kx
� dkdx , �58�

where �̌ are the new variables.

�kx = 2kU�x� �59�

is a position-dependent frequency. Note that, in this case, we have �k�x�kx�0 and the near-
canonical change in variables given by Eq. �41� had to be performed.
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We can also obtain the same result by directly applying the Gabor transform to Eq. �56�.
Using the slow dependence of U�x� on x �disregarding the second derivative and higher�, we
obtain


�U�x��x��x�� � �U�x� − x�xU�x� + i�xU�x��k���x + ik��̃kx. �60�

Similarly, we have


��xU�x���x�� � �xU�x��̃kx. �61�

Substituting Eqs. �60� and �61� into Eq. �56�, we obtain

i
�

�t
�̃kx = �− i2U�x��x + 2kU�x� + 2ix�xU�x��x − 2xk�xU�x� + 2�xU�x��kx + 2i�xU�x�

+ 2i�xU�x�k�k − i�xU�x���̃kx. �62�

Using Eq. �59�, we rewrite Eq. �62� as

i
�

�t
�̃kx = ��kx − x�x�kx + �k�x�kx�k�x + i��x�kx�k − �k�kx�x� + ix�k�x�kx�x +

1

2
i�k�x���̃kx.

�63�

As in the lemma, we neglect the higher order terms with the two derivatives over x �underlined in
Eq. �63��. In order to obtain the canonical form of the equation of motion, we need to make a
near-canonical transformation

�̂kx = f�̌kx,

where f satisfies

�k�kx�xf − �x�kx�kf = 1
2 f�k�x�kx. �64�

For this special case, we obtain

U�x��xf = �xU�x�� 1
2 f + k�kf� . �65�

We have to find the solution for Eq. �65� such that f →1 when �xU�x�→0. Therefore, we need to
find a solution in the form f =1+g, where g satisfies �g�k ,x���1. Let us try to find a solution in the
form f = f�x�, i.e., independent of k. Then we have

f�x� = C�U�x� ,

where C is an arbitrary constant. We expand U�x� around some point of reference x0 as

U�x� � U�x0� + �x − x0��xU�x0� .

Let us choose the constant to be C=1 /�U�x0�, then we obtain

f � 1 +
1

2
�x − x0�

�xU�x0�
U�x0�

.

If �xU�x0��� and �x−x0��1 /� then f �1 and the transformation is near canonical.
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V. GENERAL CASE OF WAVES IN WEAKLY INHOMOGENEOUS MEDIA

A. Theorem

The result of the lemma can be generalized onto a much broader class of Hamiltonian given
by �4�. Thus, let us consider �4� with both A and B being peaked functions of q−q1, which
corresponds to waves on a weakly inhomogeneous background. Note that

A�q1,q� = A��q,q1� , �66�

because the Hamiltonian is Hermitian. Moreover,

B�− q,− q1� = B�q1,q� . �67�

Condition �67� does not really restrict our choice of the coefficient B�q ,q1�. Indeed, we can
consider any function B and then represent it as a sum of two components,

B�q,q1� = B��q,q1� + B��q,q1� , �68�

where

B��q,q1� = 1
2 �B�q,q1� + B�− q1,− q�� ,

B��q,q1� = 1
2 �B�q,q1� − B�− q1,− q�� .

When we plug Eq. �68� into Hamiltonian �4�, the part of the integral with B� vanishes.
From now on, we will omit indices wherever it does not lead to confusion and denote a

� ǎk,x and a−� ǎ−k,x. Also, we introduce some convenient notations, which we will use throughout
the rest of the paper. For any function ��k�, we denote its even part as �ev and its odd part �od,

�ev = 1
2 �� + �−� ,

�od = 1
2 �� − �−� .

We now are ready to formulate the main theorem of this paper.
Theorem: Consider a Hamiltonian �4� with A�q ,q1� and B�q ,q1� being peaked functions of

�q−q1� with the same parameter � , i.e., A�q ,q1�=0 and B�q ,q1�=0 when �q−q1��� . Suppose
that conditions �66� and �67� are satisfied. Let us introduce new notations,

� �� A�k − m/2,k + m/2�eim·xdm ,

� �� B�k − m/2,k + m/2�eim·xdm ,

� � R��� ,

�̃ � I��� .

Suppose that Hamiltonian �4� has a dominant diagonal part, i.e., �ev�� and �̃=O���. Then, there
exists a new canonical change in variables from ak to ckx , and the evolution of system �4� can be
approximately described by the following equation of motion:

i
�

�t
ckx =

�Hf

�ckx
� ,
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with a filtered Hamiltonian

Hf =� ckx�� − x · �x� + i	�, ·
�ckx
� dkdx . �69�

The position-dependent frequency is given by the formula

� = �od + ��ev
2 − �2.

The transformation from the Fourier variables ak to new variables ckx is given in the proof.
Proof: The proof consists of three main steps. In order to diagonalize Hamiltonian �4�, we �1�

apply the Lemma to simplify the Hamiltonian using the peakness of the kernels, �2� perform
Bogolyubov transformation to diagonalize the O�1� part of the Hamiltonian, and �3� make a
near-identity canonical transformation to diagonalize the O��� part of the Hamiltonian.

Step 1: �Applying lemma� Similarly to Eq. �26�, we can write a filtered Hamiltonian for Eq.
�4� as

Hf
�1� =� ǎ�� − x · �x� + i	�, ·
�ǎ�dkdx +

1

2
� �ǎ�� − x · �x� + i	�, ·
�ǎ−dkdx + c.c.� , �70�

here, as usual, c.c. stands for complex conjugate. From property �67� and definition �69� it follows
that ��−k ,x�=��k ,x�.

Step 2: �Bogolyubov transformation� In this step we apply the usual Bogolyubov transforma-
tion. Before doing that notice that Hamiltonian �70� consists of two parts,

Hf
�1� = Hf ,1

�1� + Hf ,�
�1�,

where

Hf ,1
�1� =� ��ǎ�2dkdx + 1

2� ��ǎǎ− + ǎ�ǎ−
��dkdx ,

�71�
Hf ,�

�1� = Hf
�1� − Hf ,1

�1�,

are correspondingly O�1� and O��� parts of Hf
�1�. In Step 2, we diagonalize the O�1� part using the

following linear transformation:

ǎ = ukxb + vkxb−
� . �72�

It was shown in Ref. 10 that transformation �72� is canonical if the following conditions are
satisfied:

�ukx�2 − �vkx�2 = 1,

ukxv−k,x = u−k,xvkx.

Let us follow Ref. 10 and choose

ukx = cosh��kx� , �73�

vkx = sinh��kx� , �74�

where �kx is real and even, but otherwise arbitrary function. Then under change in variables given
by Eq. �72�, Hf ,1

�1� becomes
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Hf ,1
�1� =� �� cosh2��� + �− sinh2��� + 2� sinh���cosh�����b�2dkdx +

1

2
� ��� + �−�sinh���cosh���

+ ��cosh2��� + sinh2������bb− + b�b−
��dkdx .

Denote the expression in square brackets multiplying �b�2 as �,

� = � cosh2��� + �− sinh2��� + 2� sinh���cosh��� .

Using trigonometric formulas for hyperbolic functions, we obtain

� = �ev cosh�2�� + �od + � sinh�2�� . �75�

In order to diagonalize Hf ,1
�1�, we require that the following condition in satisfied:

�ev sinh���cosh��� + ��cosh2��� + sinh2���� = 0. �76�

This condition is equivalent to

tanh�2�� = −
�

�ev
. �77�

Since �ev��, we can choose cosh�2�� to be positive and, therefore, we have

cosh�2�� =
�ev

��ev
2 − �2

, �78�

sinh�2�� = −
�

��ev
2 − �2

. �79�

In Appendix B, we find the expression for �. Resolving Eq. �75� together with Eqs. �78� and �79�,
we obtain

� = �ev + �od,

�od = �od,

�ev = ��ev
2 − �2.

Therefore, we have diagonalized Hf ,1
�1� to the form

Hf ,1
�1� =� b�b�dkdx . �80�

Next, we consider the O��� part of the filtered Hamiltonian. In Appendix C, we show that Bogoly-
ubov transformation �72� transforms Hf ,�

�1� to the form

Hf ,�
�1� =� b�− x · �x� + i	�, ·
�b� + ��bb− +

i�ev
2

2�
b	�,b−
 + c.c.�dkdx , �81�

where

� =
�ev

2

2�
�x · �x

�ev

�ev
� +

i

2
	�od,�
 +

i

2
�̃ ,
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� =�1 −
�2

�ev
2 =

�ev

�ev
.

Combining Eqs. �80� and �81�, we finally obtain Hamiltonian in the form

Hf
� =� b�� − x · �x� + i	�, ·
�b� + ��bb− +

i�ev
2

2�
b	�,b−
 + c.c.�dkdx . �82�

Step 3: �Near-identity transformation� In Step 2, we diagonalized O�1� part but not all of the
O��� part. In order to diagonalize complete Hamiltonian, we use the near-identity transformation.
This near-identity transformation changes variables from bkx to ckx by the following rule:

bkx = ckx + �kc−k,x
� + �k	�k,c−k,x

� 
 , �83�

where we assume that �k and �k are O�1� terms and �k and ��k	�k ,c−k
� 
� are O��� which makes

our transformation indeed near identical. Note that �k, �k, and �k are functions of both k and x.
Nevertheless, for simplicity of notation, we do omit the dependence on x, since it would only
unnecessarily pollute the notations. In Appendix D, we derive the canonicity conditions for trans-
formation �83�. It turns out that transformation �83� is canonical if the following conditions are
met:

�k = �−k,

�k = �−k, �84�

�od = 1
2 	�k,�k
 .

Among the coefficients �k, �k, and �k that satisfy the canonicity conditions, we have to choose
those that will diagonalize the O��� part. In Appendix E, we show that such coefficients become

�k = −
�k

�

�ev
−

�k

2�ev
��od,

�ev

�ev
� ,

�k =
i�ev

2

2��ev
, �85�

�k =
�ev

�ev
.

Note that these conditions are in full correspondence with the canonicity conditions �84�. The
Hamiltonian in new variables up to O��� order is

Hf =� c�� − x · �x� + i	�, ·
�c�dkdx .

This completes the proof of the main result of this paper. �

B. Example: Nonlinear Schrödinger equation—waves on condensate

BEC is a state of matter that arises in dilute gases with large number of particles at very low
temperatures.21–26 BEC can be described by the nonlinear Schrödinger equation �also known as
Gross–Pitaevskii equation27�. Here, we apply the theorem to this well studied model. The evolu-
tion of the state function � is described by the following equation:
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i
��

�t
+ �� − ���2� + ��t�� = 0,

with a corresponding Hamiltonian

H =� �����2 +
1

2
���4 − ��t����2�dx .

The term ��t�� is introduced for convenience as will become clear later. Following Ref. 7, let us
consider the amplitude-phase representation of the order parameter �,

� = Aei�.

Now, we introduce Hamiltonian momentum

p = 2A� , �86�

and rewrite Eq. �86� in terms of new canonical variables A and p as

At =
�H

�p
,

�87�

pt = −
�H

�A
,

where

H =� ���A�2 +
1

2
A4 − ��t�A2 +

1

4
��p −

p � A

A
�2�dx . �88�

Let us consider weak perturbations on background of a strong condensate,

A = A�0� + A�1�, p = p�0� + p�1�, �A�1�� � �A�0�� . �89�

We now choose ��t�= �A�0��2 which gives us p�0���. Substituting Eq. �89� into Eq. �88� we have

H = H0 + H2 + H3,

where the subscripts denote the order of the term with respect to perturbation amplitudes. Since in
this paper we study the linear dynamics, we only consider the quadratic part of the Hamiltonian,

H2 =� ���A�1��2 + �A�0��2�A�1��2 +
1

4
��p�2 +

1

2

p�0�

A�0� � p · �A�1� +
1

4
p�� ln A�0�� · �p�dx .

Here, we used the fact that the spatial derivative adds one order in � and we neglected the terms
of the order of 2 and higher.

In order to apply the theorem to H2, we first transform to Fourier space and then switch to
normal variables. Let us denote R= �A�0��2, S= p�0� /A�0�, and T=�x ln A�0�. We have R=O�1� and
S ,T=O���. Transforming H2 into Fourier space, we obtain

H2 =� ��k1 · k2�2
1 + R2−1�A1A2

� +
1

2
S2−1k1 · k2p1A2

� +
1

4
�k1 · k2�2

1 − T2−1k1 · �k2 − k1��p1p2
��d12,

where we used the following simplified notations: 1�k1, 2�k2, and subscript 2−1�k2−k1.
Next, we switch to normal variables using the transformation
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Ak =
1
�2

�ak + a−k
� � ,

�90�

pk = −
i

�2
�ak − a−k

� � .

In normal variables, H2 reads

H2 =� ��5

4
k1 · k2�2

1 + R2−1 +
1

8
T2−1�k2 − k1�2�a1a2

� +
1

2
�3

4
k1 · k2�2

1 + R2−1 −
i

2
S2−1k1 · k2

+
1

4
T2−1k1 · �k2 − k1��a1a−2 + c.c.�d12.

The only part of the coefficient in the second parenthesis we are interested in is the one that
satisfies Eq. �67�,

3

4
k1 · k2�2

1 + R2−1 −
i

2
S2−1k1 · k2 +

1

8
T2−1�k2 − k1�2.

Since A�0� and p�0� are slowly varying functions of x, so are R�x�, S�x�, and T�x�. Therefore, their
Fourier transforms are peaked around zero making the terms proportional to T2−1�k2−k1�2 of the
second order in �, which can be neglected. Finally, we can write down the Hamiltonian in the form
given in Eq. �4�,

H2 =� �A�k1,k2�a1a2
� +

1

2
�B�k1,k2�a1a2

� + c.c.��d12, �91�

where

A�k1,k2� = 5
4k1 · k2�2

1 + R2−1

�92�

B�k1,k2� =
3

4
k1 · k2�2

1 + R2−1 −
i

2
S2−1k1 · k2.

In terms of window transformations, which we denote here as a, the Hamiltonian reads

Hf =� a�� − x · �� + i	�, ·
�a�dkdx +
1

2
� �a�� − x · �� + i	�, ·
�a−dkdx + c.c.� ,

where

� =� eim·xA�k − m/2,k + m/2�dm =
5

4
k2 + R�x� ,

�93�

� =
1

2
� eim·xB�k − m/2,k + m/2�dm =

3

4
k2 + R�x� −

i

2
k2S�x� +

1

2
k · �S�x� .

Up to the first order in �, we have
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� = 3
4k2 + R�x� ,

�94�
�̃ = − 1

2k2S�x� .

Here, � is an even function of k which means that �ev=� and �od=0. Then, the position-
dependent frequency of the small perturbations in the presence of the condensate becomes

� = ��2 − �2 = �k��R�x� + k2.

Bogolyubov’s transformation, a=ub+vb−
�, is given by the following coefficients:

u =
�

��2 − �2
=

5k2 + 4R�x�
4�k��k2 + R�x�

,

v = −
�

��2 − �2
= −

3k2 + 4R�x�
4�k��k2 + R�x�

.

In terms of variables b, the Hamiltonian takes the following form:

Hf =� b�� − x · �x� + i	�, ·
�b�dkdx + �� �bb−dkdx +
i

2
� �b�ev

2

�
	�,b−
�dkdx + c.c.� ,

�95�

where

� =
�2

2�
x · ��1 −

�2

�2 +
i

2
�̃ = −

k2

4 � x · �R�x�
�k��k2 + R�x�

+ iS�x�� ,

� =�1 −
�2

�2 =
4�k��k2 + R�x�

5k2 + 4R�x�
.

Finally, we perform the near-identity transformation b=c+�c−
� +�	� ,c−

�
, where

� =
x · �R�x�

4�k2 + R�x��
−

i�k�S�x�

4�k2 + R�x�
,

� =
i�5k2 + 4R�x��2

8�k��k2 + R�x��3k2 + 4R�x��
,

� =
4�k��k2 + R�x�

5k2 + 4R�x�
.

The resulting Hamiltonian attains the canonical form �5�.

VI. CONCLUSIONS

We have studied the dynamical behavior of the linearized spatially inhomogeneous Hamil-
tonian wave systems. The canonical transformation from the Fourier variables to the new spatially
dependent variables is found for the general class of the quadratic Hamiltonians. In the new
variables, the linearized dynamics is governed by the canonical diagonal Hamiltonian with the
spatially dependent dispersion relation. The waveaction transport equation which corresponds to
this Hamiltonian has form �6� which is typical to WKB formalism. It was previously obtained for
some specific examples, e.g., in plasmas28 and geophysical waves.16,29 In this paper, we have
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given several representative examples illustrating the general results, such as the nonlinear
Schrödinger equations without and with condensate and an advective-type system. Further pos-
sible areas of application of this formalism include water waves on lakes with variable depth
or/and presence of variable mean flow, internal waves in media with variable stratification, plasma
waves on profiles with variable density, geophysical waves in media with variable background
rotation rates, etc.

The new Hamiltonian formalism that is presented in this paper should be crucial for extending
the WT theory to the spatially inhomogeneous systems. In the spatially homogeneous systems,
quadratic term in the Hamiltonian corresponds to the first term in Eq. �69�. Effect of space
inhomogeneity leads to the appearance of the derivative terms in the Hamiltonian, which corre-
spond to the slow dynamics along the rays in the �k ,x�-space. This effect will lead to an inter-
esting interplay of inhomogeneity and nonlinearity in WT systems. More specifically, linear dis-
persion relation becomes spatially dependent. Consequently, the resonance conditions change as
waves propagate through inhomogeneous environment. As a result of this, waves will remain in
resonance for a limited amount of time, or the members of the resonant triads will change from
position to position. The physical implication of this effect may be the weakened flux of energy or
other conserved quantities through the wavenumber space. Other effect may be an effective broad-
ening of the resonances, as resonances will be altered from place to place, so the wavepacket
propagating through the inhomogeneous environment will be affected by averaged dispersion
relation. Another potentially interesting effect is an effective three-wave interactions in a four-
wave weak turbulence systems, where the role of fourth wave is played by inhomogeneity.

In order to develop a WT theory for spatially inhomogeneous systems, the kinetic equation
has to be obtained for the cases with such finite-time wave resonances. This is an exciting task for
the future work.
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APPENDIX A: WINDOW TRANSFORM

Let us consider the right-hand side of Eq. �33� term by term.

�1� For f0F0,

� 1
�	

�d� f̂��k − p�/���ei�p+m−k�·xF�k,m�ãp,x1
dpdmdx1

= � 1
�	

�d� f̂��k − p�/���ei�p−k�·xãp,x1
dpdx1� F�k,m�eim·xdm = �kxãkx. �A1�

�2� For f1F0,

� 1
�	

�d� m · �p f̂��k − p�/���ei�p+æ−k�·xF�k,æ�ãp,x1
dpdmdx1

= − � 1
�	

�d� f̂��k − p�/���im · xei�p+m−k�·xF�k,m�ãp,x1
dpdmdx1

− � 1
�	

�d� f̂��k − p�/���ei�p+m−k�·xF�k,m�m · �pãp,x1
dpdx1dm

= − x · �x�kxãkx + i�x�kx · �kãkx. �A2�

�3� For f0F1,
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� 1
�	

�d� f̂��k − p�/���ei�p+m−k�·x�p − k + m/2� · �kF�k,m�ãp,x1
dpdmdx1

= − i� 1
�	

�d� f̂��k − p�/���ei�p−k�·xi�p − k�ãp,x1
dpdx1 ·� eim·x�kF�k,m�dm

+ � 1
�	

�d� f̂��k − p�/���ei�p−k�·xãp,x1
dpdx1�− i�� i/2eimxm · �kF�k,m�dm

= − i�k�kx · �xãkx − i/2��k · �x��kxãkx. �A3�

�4� For f1F1,

� m · �p f̂��k − p�/���ei�p+m−k�·x�p − k� · �kF�k,m�ãp,x1
dpdmdx1

=� f̂��k − p�/���iei�p−k�·xãp,x1
x · �p − k�dpdx1� − eim·xm · �kF�k,m�dm

+� f̂��k − p�/���ei�p−k�·xãp,x1
dpdx1� − eim·xm · �kF�k,m�dm

+� f̂��k − p�/���ei�p−k�·x�pãp,x1
· �p − k�dpdx1� − eim·xm · �kF�k,m�dm

= i��k · �x��kxx · �xãkx + i��k · �x��kxãkx + ��k · �x��kx��k · �x�ãkx. �A4�

APPENDIX B: CALCULATION OF �

In order to calculate �, we solve Eq. �78�. Notice that cosh 2��1 since �ev��. Using the
definition of the cosh function, we can write

e2� + e−2� = 2
�ev

��ev
2 − �2

,

and denoting t=e2�, one obtains a quadratic equation for t with two solutions,

t =
�ev � ���
��ev

2 − �2
.

After we take into account Eq. �79�, we obtain the following expression for �:

� =
1

4
ln

�ev − �

�ev + �
. �B1�

APPENDIX C: BOGOLYUBOV TRANSFORMATION OF THE O„ε… PART

Here, we show how Bogolyubov transformation works on Hf ,�
�1�. We consider the terms of Eq.

�71� starting with
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−� �ǎ�x · �x��ǎ� +
1

2
�x · �x���ǎǎ− + ǎ�ǎ−

���dkdx

= −� �ub + vb−
���x · �x���ub� + vb−�dkdx

+ �1

2
� �x · �x���ub + vb−

���ub− + vb��dkdx + c.c.�
= −� b��u2 + v2��x · �x�ev� + �u2 − v2��x · �x�od� + 2uv�x · �x���b�dkdx

−� �uv�x · �x�� +
1

2
�u2 + v2��x · �x����bb− + b�b−

��dkdx

=� �− b�x · �x��b� +
�ev

2

2�
�x · �x�1 −

�2

�ev
2 ��bb− + b�b−

���dkdx . �C1�

Here we used the following equalities:

u2 + v2 = cosh�2��, 2uv = sinh�2��, u2 − v2 = 1,

sinh�2�� = ���, cosh�2�� = ��ev
�, 1 = ��od

� , �C2�

sinh�2���x�ev + cosh�2���x� = −
�ev

2

�
�x�1 −

�2

�ev
2 .

Next, we consider the terms of Eq. �71� with the Poisson bracket,

� iǎ	�, ǎ�
dkdx +
1

2
� i	�, ǎ−
dkdx =

i

2
� �ǎ	�, ǎ�
 + ǎ	�, ǎ−
�dkdx + c.c.

=
i

2
� �ub + vb−

���	�,ub� + vb−
 + 	�,ub− + vb�
�dkdx + c.c.

�C3�

Note the following.

• bb� terms give zero because their coefficients are purely imaginary and we add c.c. values in
the end.

• b��b terms can be obtained as c.c. of b�b� terms.

Here, � denotes a gradient either with respect to x or with respect to k. Now, let us consider
�C3� term by term.
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�1� b�b� and b��b:

�C4�

Here, we used the fact that �b	� ,b�
dkdx=−�b�	� ,b
dkdx.
�2� bb− and b�b−

�:

�C5�

Here, we have used Eq. �B1�.
�3� b�b− and b��b−

�:

i

2
� �uvb−

�	�,b�
 + uvb	�,b−
 + u2b	�,b−
 + v2b−
�	�,b�
�dkdx + c.c.

=
i

2
� �b sinh�2��	�ev,b−
 + b cosh�2��	�,b−
�dkdx + c.c.

=
i

2
� b��ev

2

�
��1 −

�2

�ev
2 ,b−��dkdx + c.c. �C6�

We used Eq. �C2� here.

Finally, the rest of O��� terms are

i

2
� �̃aa−dkdx + c.c. =

i

2
� �̃bb−dkdx + c.c. �C7�

Combining Eqs. �C1�–�C7�, we obtain the O��� part of the Hamiltonian given by Eq. �82�.

APPENDIX D: CANONICITY CONDITIONS FOR NEAR-IDENTITY TRANSFORMATION

Here, we obtain the canonicity conditions for the coefficients of the near-identity transforma-
tion �83�. For the canonicity up to O��� order, we use the equation of motion in the Hamiltonian
form,

iḃk =
�H

�bk
� . �D1�

In this appendix for simplicity of notation, we skip writing x in the subscript of the dynamical
variables. Using Eq. �83�, we obtain
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i�ċk + �kċ−k
� + �k	�k, ċ−k

� 
� =
�H

�bk
� . �D2�

Since we are neglecting terms of the order higher than O���, we can use the following approxi-
mation:

ċ−k
� = i

�H

�c−k
� i�−kc−k

� . �D3�

Combining Eqs. �D2� and �D3�, we obtain

�H

�bk
� =

�H

�ck
� − �k�−kc−k

� − �k	�k,�−kc−k
� 
 . �D4�

Further, we have the chain rule in the form

�H

�ck
� =� � �H

�bq
�

�bq
�

�ck
� +

�H

�b−q

�b−q

�ck
� �dq . �D5�

Using Eq. �83�, we find

�bq
�

�ck
� = �k

q,

�b−q

�ck
� = �−q�k

q − �−q	�−q,�k
q
q,

where the subscript of the Poisson bracket indicates the differentiation with respect to q. There-
fore, Eq. �D5� becomes

�H

�ck
� =

�H

�bk
� + �−k�−kc−k

� + 	�−k,�−k�−kc−k
� 
k. �D6�

Combining Eqs. �D4� and �D6�, we find

0 = − 2�−kc−k
� �od − �k	�k,�−kc−k

� 
 + 	�−k,�−k�−kc−k
� 
 . �D7�

Finally, we obtain the canonicity conditions given in Eq. �84�.

APPENDIX E: NEAR-IDENTITY TRANSFORMATION

Lets us first apply the near-identity transformation to the O�1� part of the Hamiltonian that is
given by Eq. �80�,

� �b�bdkdx =� �c�c + ����cc− + ���c	��,c−
 + c.c.�dkdx + h.o.t.

To apply this transformation to the O��� part we just need to substitute b with c in Eq. �81�. The
nondiagonal terms cancel in the Hamiltonian if

� �� + ����cc− + ����c	��,c−
 +
i�ev

2

2�
c	�,c−
�dkdx = 0. �E1�

Let us choose
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� = �� = � =
�ev

�ev
. �E2�

Then we can rewrite Eq. �E1� as

� �� + ����cc− + ���ev + �od��� +
i�ev

2

2�
�c	�,c−
dkdx = 0.

Integrating by parts one can show that

� �od�
�c	�,c−
dkdx =

1

2
� 	�od�

�,�
cc−dkdx .

Therefore, the diagonalizing condition becomes

� �� + ��� +
1

2
	�od�

�,�
�cc− + ��ev�
� +

i�ev
2

2�
�c	�,c−
dkdx = 0

From Eq. �E3�, the condition on � immediately follows

� =
i�ev

2

2��ev
. �E3�

In order to obtain the condition on �, we expand the second term in the integral

��� = �od�od
� + �ev�ev

� + �od�ev
� + �ev�od

� . �E4�

The integral over the last two terms vanishes because these functions are odd. Therefore, we
consider only the other two terms. Next, we insert this expansion into Eq. �E3�,

� �� + �od�od
� + �ev�ev

� +
1

2
�od	��,�
 +

1

2
��	�od,�
�cc− + ��ev�

� +
i�ev

2

2�
�	�,c−
cdkdx = 0.

Then, we obtain the following diagonalizing conditions on �:

�ev = −
��

�ev
−

�

2�ev
��od,

�ev

�ev
� , �E5�

�od = −
1

2
��,

�ev

�ev
� . �E6�

Let us prove that �od=0. Substituting Eq. �E3� into Eq. �E6�, we obtain

�od = −
i

4
� �ev

2

��ev
,
�ev

�ev
� .

Expanding the Poisson bracket we find the following identity:

� �ev
2

��ev
,
�ev

�ev
� =

�	�ev,�ev
 + �	�ev,�
 + �ev	�,�ev

�2�ev

. �E7�

According to the definition, �ev
2 =�ev

2 −�2. Differentiation of both sides of the last equality with
respect to x or k yields
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��ev =
�ev

�ev
� �ev −

�

�ev
� � . �E8�

We use Eq. �E8� to show that

	�ev,�ev
 = −
�

�ev
	�ev,�
 ,

�E9�

	�ev,�
 =
�ev

�ev
	�ev,�
 .

Plugging Eq. �E9� into Eq. �E7� proves that �od=0.
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