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Wave turbulence and vortices in Bose–Einstein condensation
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Abstract

We report a numerical study of turbulence and Bose–Einstein condensation within the two-dimensional Gross–Pitaevsky model with repulsive
interaction. In the presence of weak forcing localized around some wave number in the Fourier space, we observe three qualitatively different
evolution stages. At the initial stage a thermodynamic energy equipartition spectrum forms at both smaller and larger scales with respect to the
forcing scale. This agrees with predictions of the four-wave kinetic equation of the Wave Turbulence (WT) theory. At the second stage, WT breaks
down at large scales and the interactions become strongly nonlinear. Here, we observe formation of a gas of quantum vortices whose number
decreases due to an annihilation process helped by the acoustic component. This process leads to formation of a coherent-phase Bose–Einstein
condensate. After such a coherent-phase condensate forms, evolution enters a third stage characterised by three-wave interactions of acoustic
waves that can be described again using the WT theory.
c© 2006 Elsevier B.V. All rights reserved.
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1. Background and motivation

For dilute gases with large energy occupation numbers the
Bose–Einstein condensation (BEC) can be described by the
Gross–Pitaevsky (GP) equation [1,2]:

iΨt + 1Ψ − |Ψ |
2Ψ = γ, (1)

where Ψ is the condensate “wave function” (i.e. the c-number
part of the boson annihilation field) and γ is an operator which
models possible forcing and dissipation mechanisms which will
be discussed later. Renewed interest in the nonlinear dynamics
described by the GP equation is related to relatively recent
experimental discoveries of BEC [3–5]. The GP equation also
describes light behaviour in media with Kerr nonlinearities. In
the nonlinear optics context it is usually called the Nonlinear
Schrödinger (NLS) equation.

It is presently understood, in both the nonlinear optics and
BEC contexts, that the nonlinear dynamics described by the GP
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equation is typically chaotic and often non-equilibrium [6–9,
11]. Thus, it is best characterised as “turbulence” emphasizing
its resemblance to the classical Navier–Stokes (NS) turbulence.
On the other hand, the GP model has an advantage over NS
because it has a weakly nonlinear limit in which the stochastic
field evolution can be represented as a large set of weakly
interactive dispersive waves. A systematic statistical closure
is possible for such systems and the corresponding theory is
called Wave Turbulence (WT) [12]. For small perturbations
about the zero state in the GP model, WT closure predicts
that the main nonlinear process will be four-wave resonant
interaction. This closure was used in [6,8,9] to describe the
initial stage of BEC. In the present paper we will examine this
description numerically. We report that our numerics agree with
the predicted by WT spectra at the initial evolution stage.

It was also theoretically predicted that the four-wave WT
closure will eventually fail due to the emergence of a coherent
condensate state which is uniform in space [9]. Note that
strengthening of nonlinearity and corresponding breakdown of
the four-wave closure is important for this, because it was
shown in [10] that condensation is impossible in the 2D case
described by the four-wave kinetic equation. Whereas it is
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natural to think that without forcing the nonlinearity may
remain forever small for sufficiently small initial conditions, in
the presence of forcing the nonlinearity will inevitably become
strong due to continuous pumping of particles.

At a later stage the condensate is so strong that the
nonlinear dynamics can be represented as interactions of
small perturbations about the condensate state. Once again,
one can use WT to describe such a system, but now the
leading process will be a three-wave interaction of acoustic-
like waves on the condensate background [9,11]. Coupling of
such acoustic turbulence to the condensate was considered in
[13] which allowed us to derive the asymptotic law of the
condensate growth. However, this picture relies on assumptions
that the system will consist of a uniform condensate and
small perturbations. Neither the condensate uniformity nor the
smallness of perturbations have ever been validated before. In
the present paper we will examine whether it is true that the
late stage of GP evolution can be represented as a system of
weakly nonlinear acoustic waves about a strong quasi-uniform
condensate. By examining the frequency–wave number Fourier
transforms, we do observe waves with frequency in agreement
with the Bogoliubov dispersion relation. The width of the
frequency spectrum is narrow enough for these waves to be
called weakly nonlinear.

An unresolved question in the theory of GP turbulence
concerns the stage of transition from the four-wave to the three-
wave regimes. This stage is strongly nonlinear and, therefore,
cannot be described by WT. However, using direct numerical
simulations of Eq. (1), we show that the transitional state
involves a gas of annihilating vortices. When the number of
vortices reduces so that the mean distance between the vortices
becomes greater than the vortex core radius (healing length)
the dynamics becomes strongly nonlinear. This corresponds to
entering the Thomas–Fermi regime when the mean nonlinearity
is greater than the dispersive term in the GP equation. The
mean inter-vortex distance is a measure of the correlation
length of the phase of Ψ and, therefore, the vortex annihilation
corresponds to creation of a coherent-phase condensate. At
this point, excitations with wavelengths in between of the
vortex-core radius and the inter-vortex distance behave as
sound. In this paper, we draw attention to the similarity of
this transition process to the Kibble–Zurek mechanism of
the second-order phase transition which had been introduced
originally in cosmology [14,15].

2. WT closure and predictions

The WT closure is based on the assumptions of small
nonlinearity and of random phase and amplitude variables.
Here we will report the results which will be of help in our
discussion (the interested reader should refer to [12] for the
standard derivation or to [16] for further developments).

The staring point in the derivation is the GP equation (1) in
a periodic box written in Fourier space:

i∂t Ψ̂k − k2Ψ̂k =

∑
α,µ,ν

¯̂ΨαΨ̂µΨ̂νδ
kα
µν + γ̂k, (2)

where Ψ̂ j = Ψ̂(k j ), an overbar means complex conjugation,
wave vectors k j ( j = 1, 2, 3) are on a 2D grid (due to
periodicity) and the term δkα

µν = 1 for k + kα = kµ + kν and
equal to 0 otherwise.

2.1. Four-wave interaction regime

In order to describe the WT theory for Eq. (2) it is usual
to neglect the forcing and dissipation term γ̂k assuming that
these are localized at high or low wave numbers and we
are mainly interested in an inertial range of k. The goal is
to write an evolution equation for the spectrum defined as
〈ΨiΨ∗

j 〉 = n(ki )δ(ki − k j ), where the angle brackets stand
for ensemble averages. In order to write such equation it
is necessary to exploit small nonlinearity and use a random
phase approximation [12] (see also [16] for a generalization
of the random phase approximation also to randomness of the
amplitudes). The procedure allows us to close equations for
the spectrum by using the Wick-type splitting of the higher
Fourier moments in terms of the spectrum. In the leading order
in nonlinearity one gets the nonlinear frequency correction,

ωN L = 2
∫

nkdk. (3)

The next order gives an evolution equation for the spectrum,

ṅk = 4π

∫
nknunµnν

×

(
1
nk

+
1

nu
−

1
nµ

−
1
nν

)
δ(ωku

µν)δ
ku
µν dkudkµdkν . (4)

This is the wave-kinetic equation (WKE) which is the most
important object in the wave turbulence theory (for the GE
equation, it was first derived in [7]). It contains Delta functions
for four wave vectors, δku

µν = δ(k + ku − kµ − kν), and for
the four corresponding frequencies, δ(ωku

µν) = ωk + ωu −

ωµ − ων , which means frequencies, δ(ωku
µν), which means that

the spectrum evolution in this case is driven by a four-wave
resonance process. Note that the WT approach is applicable not
only to the spectra but also to the higher moments and even
the probability density functions [16,17]. However, we are not
going to reproduce these results because their study is beyond
the aims of the present paper.

As is well known from [12], there are typically four power-
law solutions of the four-wave kinetic equation (4) and they
are related to the two invariants for such systems, the total
energy, E =

∫
ωknkdk, and the total number of particles,

N =
∫

nkdk. Two of such power-law solutions correspond to a
thermodynamic equipartition of one of these invariants,

nk ∼ 1/ωk = k−2 (energy equipartition), (5)

nk = const (particle equipartition). (6)

These two solutions are limiting cases of the general
thermodynamic distribution,

nk = T/(ωk + µ), (7)

where constants T and µ have the meanings of temperature and
chemical potential respectively. Due to isotropy, it is convenient
to deal with an angle-averaged 1D wave action density in
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variable k = |k|, the so-called 1D wave action spectrum Nk =

2πknk . In terms of Nk , solutions (5) and (6) have exponents −1
and 1 respectively.

The other two power-law solutions correspond to a
Kolmogorov-like constant flux of either energy (down-scale
cascade) or the particles (up-scale cascade) [9]. As shown in
[9], the formal solution for the inverse cascade has the wrong
sign of the particle flux and is, therefore, irrelevant. On the
other hand, the power exponent of the direct cascade solution
formally coincides with the energy equipartition exponent
−2 and, in fact, it is the same solution. Because of such a
coincidence, the energy flux value is equal to zero on such a
solution and, therefore, it is more appropriate to associate it
with thermodynamic equilibrium rather than a cascade.

2.2. Three-wave interaction regime

If the system is forced at large wave numbers and there is
no dissipation at low k’s then there will be condensation of
particles at large scales. The condensate growth will eventually
lead to a breakdown of the weak nonlinearity assumption [9,19]
and the four-wave WKE (4) will become invalid for describing
subsequent evolution. On the other hand, it was argued in [9]
that such late evolution one can consider small disturbances of
coherent condensate state Ψ0 = const, so that a WT approach
can be used again (but now on a finite-amplitude background),

Ψ(x, t) = Ψ0 (1 + φ(x, t)), φ � Ψ0. (8)

Then, with respect to condensate perturbations φ, the
linear dynamics has to be diagonalised via the Bogoliubov
transformation, which in our case is [9,13,18]

φ̂k =
1

2
√

ρ0

[(
k

ω
1/2
k

+
ω

1/2
k

k

)
ak +

(
k

ω
1/2
k

+
ω

1/2
k

k

)
āk

]
, (9)

where ak are new normal amplitudes (see for example [13]) and
ρ0 = |Ψ0|

2. In the linear approximation, amplitudes ak oscillate
at frequency

ωk = k
√

k2 + 2ρ0 (10)

which is called the Bogoliubov dispersion relation. For strong
condensate, ρ0 � k2, this dispersion relation corresponds to
sound.

Because of the non-zero background, the nonlinearity will
be quadratic with respect to the condensate perturbations and,
thus, the resulting WT closure now gives rise to a three-wave
WKE. This WKE was first obtained in [9] (see also [13]) and
here we reproduce it without derivation,

ṅk = π

∫
(Rk12 − R1k2 − R2k1) dk1dk2, (11)

where

Rk12 = |Vkk1k2 |
2 δ(k − k1 − k2)

δ(ωk − ω1 − ω2) (n1n2 − nkn1 − nkn2).

Here, Vk,k1,k2 is the interaction coefficient which can be found
in [9,13].
At late time the condensate becomes strong, ρ0 � k2, and
turbulence becomes of acoustic type. The number of particles
is not conserved by the turbulence alone (particles can be
transferred to the condensate) and there are only two relevant
power-law solutions in this case: thermodynamic equipartition
of energy and the energy cascade spectrum. Because of
isotropy, one often considers 1D (i.e. angle-integrated) energy
density,

E(k) = 2πkωknk . (12)

In terms of this quantity, the thermodynamic spectrum is

E(k) ∼ k, (13)

and the energy cascade spectrum is

E(k) ∼ k−3/2. (14)

Note that the energy cascade is direct and the corresponding
spectrum can be expected in k’s higher than the forcing wave
number, whereas the thermodynamic spectrum is expected at
the low-k range to the left of the forcing [13].

Note that the above described picture of acoustic WT relies
on two major assumptions.

1. Condensate is coherent enough so that its spatial variations
are slow and it can be treated as uniform when evolution
of the perturbations about the condensate is considered. In
other words, a scale separation between the condensate and
the perturbations occurs.

2. Coherent condensate is much stronger than the chaotic
acoustic disturbances. This allows us to treat nonlinearity of
the perturbations around the condensate as small.

Both of these assumptions have not been validated before
and their numerical check will be one of our goals. Another
major goal will be to study the transition stage that lies
in between of the four-wave and the three-wave turbulence
regimes. This transition is characterised by strong nonlinearity
and the role of numerical simulations becomes crucially
important in finding its mechanisms.

Once the three-wave acoustic regime has been reached,
the condensate continues to grow due to a continuing influx
of particles from the acoustic turbulence to the condensate.
This evolution, where an unsteady condensate is coupled
with acoustic WT, was described in [13] who predicted that
asymptotically the condensate grows as ρ0 ∼ t2 if the forcing
is of an instability type γ̂ = νknk . However, in the present
paper we work with a different kind of forcing which is
most convenient and widely used in numerical simulations:
we keep amplitudes in the forcing range fixed (and we chose
their phases randomly). Thus, one should not expect observing
the t2 regime predicted in [13] in our simulations. Note that
2D NLS turbulence was simulated numerically with specific
focus on the condensate growth rate in [20]. In our work,
we do not aim to study the condensate growth rate because
it is strongly dependent on the forcing type which, in our
model, is quite different from turbulence sources in laboratory.
On the other hand, we believe that the main stages of the
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condensation, i.e. transition from a four-wave process, through
vortex annihilations, to three-wave acoustic turbulence, are
robust under a wide range of forcing types.

3. Setup for numerical experiments

In this paper we consider a setup corresponding to
homogeneous turbulence and, therefore, we ignore finite-size
effects due to magnetic trapping in BEC or to the finite
beam radii in optical experiments. For numerical simulations,
we have used a standard pseudo-spectral method [21] for
the 2D Eq. (1): the nonlinear term is computed in physical
space while the linear part is solved exactly in Fourier space.
The integration in time is performed using a second-order
Runge–Kutta method. The number of grid points in physical
space was set to N × N with N = 256. Resolution in Fourier
space was 1k = 2π/N . A sink at high wave numbers was
provided by adding to the right hand side of Eq. (1) the hyper-
viscosity term ν(−∇

2)nΨ . Values of ν and n were selected in
order to localize as much as possible dissipation to high wave
numbers but avoiding at the same time the bottleneck effect.
We have found, after a number of trials, that ν = 2 × 10−6 and
n = 8 were good choices for our purposes. In some simulations,
we have also used a dissipation at low wave numbers of the
form of ν(−∇

2)−nΨ with ν = 1 × 10−18 and n = 8. This was
done, e.g., to see what changes if one suppresses the condensate
formation. Forcing was localized in Fourier space and was
chosen as f = | f | exp[−iφ(t)] with | f | constant in time and
φ(t) randomly selected between 0 and 2π each time step. (i)
To study turbulence in the down-scale inertial range we force
the system isotropically at wave numbers 41k ≤ |k| ≤ 61k.
To avoid condensation at large scales we introduce a dissipation
at low wave numbers, as was previously explained. The forcing
was selected as | f | = 2.1×10−3. (ii) To study the condensation
we chose forcing at wave numbers 601k ≤ |k| ≤ 631k and
dissipation at all higher wave numbers; in this case | f | =

1.6×10−3. A number of numerical simulations were performed
both with and without dissipation at the low wave numbers.
Time step for integration was t = 0.1 and usually 1.1×105 time
steps have been performed for each simulation. This is usually
enough for reaching a steady state when dissipation at both high
and low wave numbers was placed. Numerical simulations were
performed on a PowerPC G5, 2.7 GHz.

4. Numerical results

4.1. Turbulence with suppressed condensation

We start with a state without condensate for which WT
predicts four-wave interactions. WKE has two conserved
quantities in this case, the energy and the particles, and the
directions of their transfer in the scale space must be opposite
to each other. Indeed, let us assume that energy flows up-
scale and that it gets dissipated at a scale much greater than
the forcing scale. This would imply dissipating the number
of particles which is much greater than what was generated
at the source (because of the factor k2 difference between the
energy and the particle spectral densities). This is impossible
in steady state and, therefore, energy has to be dissipated at
smaller (than forcing) scales. On the other hand, the particles
have to be transferred to larger scales because dissipating them
at very small scales would imply dissipating more energy
than produced by forcing. This speculation is standard for the
systems with two positive quadratic invariants, e.g. 2D Euler
turbulence where one invariant, the energy, flows up-scale and
another one, the enstrophy, flows down-scale.

Thus, ideally, one would like to place forcing at an
intermediate scale and have two inertial ranges, up-scale and
down-scale of the source. However, this setup is unrealistic
because the presently available computing power would not
allow us to achieve simultaneously two inertial ranges wide
enough to study scaling exponents. Therefore, we split this
problem in two, with forcing at the left and at the right ends
of a single inertial range.

4.1.1. Turbulence down-scale of the forcing
Our first numerical experiment is designed to test the WT

predictions about the turbulent state corresponding to the down-
scale range with respect to the forcing scale. Thus we chose
to force turbulence at large scales and to dissipate it at the
small scales as described in the previous section. Our results
for the one-dimensional wave action spectrum in statistically
stationary condition is shown in Fig. 1. We see a range with
slope −1 predicted by both the Kolmogorov–Zakharov (KZ)
energy cascade and the thermodynamic energy equipartition
solutions of the four-wave WKE. As we mentioned earlier, it
would be more appropriate to interpret this spectrum as a quasi-
thermodynamic state rather than the KZ cascade because the
energy flux expression formally turns into zero at the power
spectrum with −1 exponent. We emphasise, however, that the
state here is quasi-thermodynamic with a small flux component
present on thermal background because of the presence of the
source and sink. One could compare this state to a lake with two
rivers bringing the water in and out of the lake. In comparison,
a pure KZ cascade would be more similar to a waterfall. To
check that the waves in our system are indeed weakly nonlinear,
we look at the space–time Fourier transform of the wave field.
The frequency–wave number plot of this Fourier transform is
shown in Fig. 2. We see that this Fourier transform is narrowly
concentrated near the linear dispersion curve, which confirms
that the wave field is weakly nonlinear. We can also see that the
spectrum is slightly shifted upwards by a value which agrees
with the nonlinear frequency shift found via substitution of the
numerically obtained spectrum into (3).

4.1.2. Up-scale turbulence
In the up-scale range one could expect that, in analogy

with the 2D Navier–Stokes turbulence, there would be an
inverse cascade of the number of particles and that the
corresponding KZ spectrum would be observed. Nevertheless,
it was pointed out in [9] that the analytical KZ spectrum
has the “wrong” direction of the flux of particles in the 2D
GP model and, therefore, cannot form. Our numerics agree
with this view. Instead of the KZ, our numerical simulations
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Fig. 1. 1D wave action spectrum Nk for the down-scale inertial range. A line
corresponding to k−1, the wave turbulence prediction, is also included.

Fig. 2. Wave number–frequency distribution of the space–time Fourier
transform of Ψ in the down-scale inertial range. Dispersion relation from linear
theory is shown as a black curve.

show that a statistical stationary state with a power law very
close to k−1 forms, see Fig. 3. This solution corresponds to
the thermodynamics solution with energy equipartition in the
k-space. Note that both theoretical rejection of the particle-
cascade spectrum [9] and our numerical study relate to the
2D model and the situation can change in the 3D case.1

Namely, it is possible that the up-scale dynamics in 3D
will be characterised by the particle-flux KZ solution or a
more complicated mixed state which involves both cascade
and temperature. On the other hand, formation of a pure
thermodynamic state in 2D is quite fortunate for the theoretical
description because analogies with the theories of phase
transition between different types of thermodynamic equilibria
become more meaningful.

1 Another difference with the 3D case may be that in 3D the condensate can
form even at low nonlinearity levels when the four-wave kinetic equation is still
valid, whereas this is impossible in 2D [10].
Fig. 3. 1D wave action spectrum Nk in the up-scale range. A power law of the
form of k−1 is also shown.

Fig. 4. Wave number–frequency distribution of the space–time Fourier
transform of Ψ in the up-scale inertial range. Dispersion relation from linear
theory is shown by a black curve.

Here, we also check that the waves in this regime are weakly
nonlinear by looking at the space–time Fourier transform. The
corresponding frequency–wave number plot is shown in Fig. 4.
As in the down-scale inertial range, we see that this Fourier
transform is narrowly concentrated near the linear dispersion
curve, i.e. the wave field is weakly nonlinear in this state.

4.2. Bose–Einstein condensation

4.2.1. Initial stage: Four-wave process
In order to study the stages of the condensation process,

the results presented in the following have been obtained with
forcing localized at high wave numbers without dissipation
at low wave numbers. At the initial stage of the simulation,
the nonlinearity remains small compared to the dispersion in
the GP equation and the four-wave kinetic equation can be
used. In Fig. 5, we show the initial (pre-condensate) stages
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Fig. 5. Initial stages of the evolution of the 1D wave action spectrum Nk . A
power law of the form of k−1 is also shown.

Fig. 6. Later stages of the evolution of the 1D wave action spectrum Nk . A
power law of the form of k−1 is also shown.

of the spectrum evolution. Similarly to the case where the
condensation was suppressed, we observe the formation of a
thermodynamic distribution.

4.2.2. Transition
After the stage where the four-wave interaction dynamics

holds, the dynamics is characterised by a transitional stage in
which the low-k front of the evolving spectrum reaches the
largest scale (at about t = 4000), see Fig. 6; the spectrum be-
gins to become steeper at low wave numbers and, as expected,
the thermodynamics solution does not hold anymore. This be-
haviour indicates that a change of regime occurs around time
t = 4000. However, the information contained in the spectrum
is insufficient to fully characterize this regime change and this
Fig. 7. Re[Ψ(x, y)] at different times: t = 2500, t = 5000, t = 7500,
t = 10 000.

Fig. 8. |Ψ(x, y)| at different times: t = 2500, t = 5000, t = 7500, t = 10 000.

brings us to study this phenomenon by measuring several other
important quantities.

To get an initial impression of what is happening during
the transition stage it is worth first of all to examine the field
distributions in the coordinate space. Fig. 7 shows a series of
frames of the real part of Ψ (imaginary part looks similar).
One can see that this field exhibits growth of a large-scale
structure. On the other hand, a field |Ψ |, shown in Fig. 8,
still remains dominated by small-scale structure. In contrast
with |Ψ |, field Ψ contains an additional information — the
phase. Thus, separation of the characteristic scales in Figs. 7
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Fig. 9. Spectrum for variable |Ψ(x, y)| at different times.

Fig. 10. Vortices in the (x, y) plane at different times: t = 2500, t = 3250,
t = 5000, t = 7500.

and 8 can be attributed to the fact that the phase correlation
length becomes much longer than the typical wavelength of
sound (characterised by fluctuations of |Ψ | as explained above
in Section 2.2). This scale separation can also be seen by
comparing the spectrum of |Ψ |, shown in Fig. 9 with the
spectrum of Ψ in Figs. 5 and 6: one can see that the former is
more flat than the latter. Now that we have established that the
phase is an important parameter, we can measure its correlation
length as the mean distance between the phase defects —
vortices. Vortices in the GP model are points in which Ψ = 0.
Some of such points correspond to the 2π phase increment
when one goes once around them, whereas the other points gain
−2π . These vortices can be defined as positive and negative
correspondingly. In contrast with the Euler equation of the
Fig. 11. Evolution in time of the density of vortices in a lin–log plot.

classical fluid, positive and negative vortices can annihilate
in the GP model and they can get created “from nothing”.
Fig. 10 shows a sequence of plates showing the positive and
negative vortex positions at several different moments of time.
One can see that initially there were a lot of vortices, which
is not surprising because the initial field is weak, i.e. close to
zero everywhere. However, at later times we see the number
of vortices is rapidly dropping, which means that the vortex
annihilation process dominates over the vortex-pair creations.
The total number of vortices (normalised by N 2) is shown as a
function of time in Fig. 11, where one can see a fast decay. The
law of decay is best seen on the log–lin plot, see Fig. 12 where
one can see a regime

Nvortices = A − B log t (15)

with A = 3.36 and B = 0.9223 which sets in at t = 800 to
t = 3500.2 Thus, the phase correlation distance, being of the
order of the mean distance between the vortices, exhibits a fast
growth in time.

A similar picture can be seen if we define the correlation
length directly based on the auto-correlation function of field
Ψ ,

CΨ (r) = 〈Ψ(x)Ψ(x + r)〉/〈Ψ(x)2
〉. (16)

Correlation length λ can be defined as

λ2
=

∫ r0

0
CΨ (r) dr, (17)

where r0 is the first zero of CΨ (r).3 Fig. 13 shows evolution of
1/λ2 which, as we see, has a similar trend as the one in Fig. 12
(showing the same quantity based on the inter-vortex spacing

2 At present, we do not have a theoretical explanation of this law of decay.
3 Strictly speaking, CΨ (r) can strongly oscillate, particularly at the initial

stages characterised by weakly nonlinear waves, i.e. the correlation length is
longer than the one defined based on the first zero. However, only positive
correlation is relevant to the condensate, which explains our definition of λ.
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Fig. 12. Evolution in time of the density of vortices in a log–lin plot. The
dashed line corresponds to the fit Nvortices = 3.36–9.223Log(t).

Fig. 13. Evolution in time of the correlation length.

definition of the correlation length). Let us have a look at a slice
of the field |Ψ | through typical vortices at a late time when
most of them have annihilated, see Fig. 14. One can see that
|Ψ | is close to zero (i.e. both Re[Ψ ] and Im[Ψ ] cross zero) at
the vortex centres and that it sharply grows to order-one values
(“heals”) at small distances from the vortex centres which
are much less than the distance between the vortices. This
means that these vortices represent fully nonlinear coherent
structures, each of which can be approximately seen as an
isolated Pitaevsky vortex solution [2]. In contrast, the initial
vortices are too close to each other to be coherent and they
correspond to a nearly linear field.4 The moment when the mean
inter-vortex separation becomes comparable to the healing
length can be captured by the intersection point of the graphs
for the mean (space averaged) nonlinear and the mean (space
averaged) Laplacian terms in the GP equation, see Fig. 15.
This intersection (at t = 6950) marks the moment when mean
nonlinearity becomes greater than the mean linear dispersion,

4 For this reason such vortices are sometimes called “ghost vortices” [22].
Fig. 14. Slice of the field |Ψ | for constant y: a single vortex is visible in the
plot.

Fig. 15. The solid line represents the space-averaged |∇
2Ψ(x, y)|; the dotted

line is the space-averaged |Ψ(x, y)|3. See text for comments.

i.e. the Thomas–Fermi regime sets in. This regime could be
thought of as the one of a fully developed condensate when
the nonlinearity, when measured with respect to the zero level,
is strong and therefore the four-wave WT description breaks
down. However, as we will see in the next section, we now
have weakly nonlinear perturbations if they are measured with
respect to a non-zero condensate state. Evolution of such
perturbations takes the form of three-wave acoustic turbulence.

What makes vortices annihilate? A positive–negative vortex
pair, when taken in isolation, would propagate with constant
speed without changing the distance between the vortices
[25]. Thus, there should be an additional entity which could
exchange energy and momentum with the vortex pair and to
allow them to annihilate. We note that the field |Ψ | is very
“choppy” in the region between the vortices, see (Fig. 14),
and, therefore, it is natural to conjecture that the missing entity
is sound. To check this conjecture, we perform the following
numerical experiment. At a desired time we filter the field and
let it evolve further without sound. The filtering is performed
numerically in the following way: we have used a Gaussian
filter in physical space and have smoothed the field around
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Fig. 16. Evolution of the vortex density in time. At time t = 6500, sound has
been filtered according to the methodology described in the text.

vortices. The complex field Ψ is therefore convoluted with a
normalised Gaussian function with standard deviation much
smaller with respect to the mean distance between vortices.
The filter is applied only in the region where no vortices are
located. The result of the filtering procedure on the evolution
of the number of vortices is shown in Fig. 16. We see that
removing the sound component does indeed reverse the vortex
annihilation process and for some time (until new sound gets
generated from forcing) we observe that the vortex creation
process dominates. We point out that the described above
regime change, accompanied by vortex annihilations, is very
similar to the Kibble–Zurek mechanism of the second-order
phase transition [14,15]. This mechanism, originally developed
in cosmology, suggest that at an early inflation stage, Higgs
fields experience a symmetry breaking transition from “false”
to “true” vacuum, and this transition is accompanied by a
reconnection–annihilation of “cosmic strings” which are 3D
analogs of the 2D point vortices considered in this paper. To
describe these fields, one normally uses nonlinear equations
of the so-called Abelian model [23], but the non-linear Klein-
Gordon or even the GP equation are sometimes used as simple
models in cosmology which retain similar physics [23,24].

4.2.3. Late condensation stage: Acoustic turbulence
It was predicted in [9] that the turbulent condensation in

the GP model will lead to creation of a strong coherent mode
with k = 0 such that the excitations at higher wave numbers
would be weak compared to this mode. If this is the case, one
can expand the GP equation about the new equilibrium state,
uniform condensate, use the Bogoliubov transform to find new
normal modes and a dispersion relation for them, Eq. (9), and to
obtain a new WKE for this system that would be characterised
by three-wave interactions, (11). However, as we saw in Fig. 6
the peak at small k remains quite broad, that is the coherent
condensate, if present, remains somewhat non-uniform. Despite
this non-uniformity, one can still use the approach of [9] if
there is a scale separation between the condensate coherence
Fig. 17. Evolution in time of 〈|Ψ |
2
〉 and 〈|Ψ |〉

2.

length (intervortex distance) and the sound wavelength and
if the sound amplitude is much smaller than the one of the
condensate.

We have already seen a tendency to the scale separation in
Figs. 6–9. On the other hand, smallness of the sound intensity
can be seen in Fig. 17 which compares (space-averaged) 〈|Ψ |

2
〉

and 〈|Ψ |〉
2. We see that at the late stages these quantities have

very close values which means that the deviations of |Ψ | from
its mean value (condensate) are weak. Thus, both conditions
for the weak acoustic turbulence to exist are satisfied at the
late stages. However, the best way to check if the condensate
perturbations do behave like weakly nonlinear sound waves
obeying the Bogoliubov dispersion relation consists in plotting
the square of the absolute value of the space–time Fourier
transform of Ψ . This result is given in Fig. 18 for the latest stage
of the simulation (from time t = 10 488 to t = 11 000). Note
that for each k the spectrum has been divided by its maximum
in order to be able to follow the dispersion relation up to high
wave numbers.

The normal variable for the Bogoliubov sound is given in
terms of Ψ by expressions (8) and (9), and, therefore, when
plotting the Bogoliubov dispersion (10), we should add a
constant frequency of the condensate oscillations, ω0 = 〈|Ψ |

2
〉.

One can see that the main branch of the spectrum does follow
the Bogoliubov law up to the wave numbers which correspond
to the dissipation range.5 Further, the wave distribution is quite
narrowly concentrated around the Bogoliubov curve which
indicates that these waves are weakly nonlinear. However, one
should realise that for formal applicability of the three-wave
kinetic equation the nonlinear frequency broadening should be
less than the dispersion which is strictly speaking not satisfied
in Fig. 18 in small k. Thus, it is possible that weak shocks
are also present. Note that the lower branch in Fig. 18 is
related to the āk contribution to expression (9) which vanishes

5 At the same time, these wave numbers are of the order of the inverse healing
length, and it is unclear whether the Bogoliubov mode is not seen there due to
wave dissipation or due to contamination of this range by the broadband (in
frequency) vortex motions.
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Fig. 18. Dispersion relation calculated from numerical simulation compared
with the upper branch of the Bogoliubov dispersion relation (solid line).

Fig. 19. E1(k) at the latest stage of the simulation (see Eq. (18)).

at larger k. Importantly, we can also see the middle (horizontal)
branch with frequency ω0 which quickly fades away at finite k’s
and which corresponds to the coherent large-scale condensate
component.

Now let us consider the energy spectrum. The GP
Hamiltonian can be written in terms of both real and Fourier
quantities,

H =

∫ (
|∇Ψ |

2
+

1
2
|Ψ |

4
)

dx =

∫ (
k2

|Ψ̂ |
2
+

1
2
|ρ̂|

2
)

dk,

(18)

where ρ = |Ψ |
2. Thus, we measure the 1D energy spectrum

in this case as E(k) = E1(k) + E2(k) with E1(k) = k3
|Ψ̂ |

2

and E2(k) =
k
2 |ρ̂|

2 The contributions to the energy spectrum
E1 and E2 as well as the total spectrum E(k) at a time
corresponding to the acoustic regime are shown in Figs. 19–21
respectively.

We see that at small scales the total energy spectrum E(k)

scales as 1/k which is a thermodynamic energy equipartition
solution in this case.
Fig. 20. E2(k) at the latest stage of the simulation (see Eq. (18)).

Fig. 21. E(k) = E(k1) + E(k2) at the latest stage of the simulation (see Eq.
(18)).

4.2.4. Frustration of condensation by sound absorption
We showed above that sound is important for the vortex

annihilation and, therefore, for the condensation process. Does
it mean that in systems where sound absorption is present one
can expect frustration of the condensation process? To answer
this question we performed numerical experiments with partial
sound filtering applied every 100 time steps; namely, each 100
time steps, we have replaced Ψ in the following way:

Ψ → (1 + C)Ψ + CΨ̃ , (19)

where Ψ̃ is the field obtained from the application of the
Gaussian filter described above to the field Ψ . Constant C � 1
corresponds to the fraction of the sound component which is
filtered out each 100 time steps. Such a partial filter could be
seen as a simple model for systems which can gradually lose
sound via radiation or absorption at the boundaries.

The numerical results for the evolution of the vortex density
in time (for different sound absorption coefficients C) are
shown in Fig. 22. We see that the sound absorption indeed slows
the condensation down and, for sufficiently high absorption,
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Fig. 22. Evolution in time of the density of vortices for different values of C
(see text for details).

it can completely halt the condensation process. Namely, for
large C’s we see that the vortex density asymptotes to a
constant level, which means that the phase coherence length
stops growing at a certain finite value.

5. Conclusions

Firstly, we confirmed WT predictions of the energy spectra
in the down-scale and up-scale inertial intervals in the cases
when the fluxes are absorbed by dissipation at the end of
the inertial interval (so that no condensation or build-up
is happening). In both of these cases we observed spectra
with an exponent corresponding to the energy equipartition
thermodynamic solution Nk ∼ 1/k (which formally coincides
with the exponent for the energy cascade solution). By looking
at the shape of the frequency–wave number mode distributions,
we verified that the turbulence is weak.

Secondly, we studied a system without dissipation at large
scales. We observed a process of Bose–Einstein condensation
and formation of a coherent large-scale mode which happens
via annihilating vortices. The condensate correlation length,
which in our case is of the order of the mean inter-vortex
distance, turns into infinity in a finite time as λ ∼ 1/(log t∗ −

log t)1/2, see Eq. (15).
We established that the process of the vortex annihilation is

due to the presence of sound. The presence of sound is crucial
for creation and maintaining the coherent phase and sound ab-
sorption leads to frustration of the perfect condensation. This
conclusion may seem counter-intuitive because it implies that
perfectly constant coherent condensate (without sound) could
not be stable.

We confirmed numerically that in late condensation stages
the system can be described as a weakly nonlinear acoustic
turbulence on the background of a quasi-uniform coherent
condensate. Namely, we confirmed that the wave excitations are
narrowly distributed around the Bogoliubov dispersion law, i.e.
that the turbulence is (i) acoustic and (ii) weak. We observed a
spectrum that corresponds to the energy equipartition solution
of the three-wave kinetic equation for such acoustic turbulence.

We would like to stress that the presence of forcing is
important for the observed condensation effect, particularly for
the presence of the strongly nonlinear stage characterised by
annihilating vortices. In the case of decaying turbulence, it
is possible that under certain conditions the nonlinearity will
never become large and the four-wave WKE will remain valid.
In this case, Bose condensation is impossible in 2D, as was
shown in [10]. Decaying turbulence, particularly conditions of
validity of the four-wave WKE, should be studied separately.

An interesting question to be addressed in the future is
to what extent the findings of this work are relevant to the
3D GP model. We can speculate that the energy spectra may
have a different nature in 3D and, in particular, may expect
formation of the Kolmogorov-like spectra corresponding to
the energy and the particle cascades. On the other hand, it
is reasonable to expect that the Kibble–Zurek scenario of
condensation will persist in the 3D case, i.e. the correlation
length will grow because of the reconnecting and shrinking
vortex loops. It is also likely that such vortex loop shrinking
will be facilitated by the sound component. Computations of 3D
GP equation in a non-turbulent setting were done in [26] where
such processes such as vortex reconnection and the role of the
acoustic component were considered. Turbulent setting will be
more taxing on the computing resources due to the great variety
of scales involved and, therefore, necessity of high resolution
and long computation times.
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